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ABSTRACT: Rare-earth elements (REEs) are known for their similar
behaviors, which make their purification through chromatographic
techniques particularly challenging. The use of α-hydroxyisobutyric acid
(α-HIBA) in combination with a cation-exchange resin is perhaps the most
widely used chromatographic technique to separate individual REEs from
each other. However, only limited REE partition data between α-HIBA
and cation resins exist, which makes it challenging to develop and optimize
purification techniques using this platform. Here, we report distribution
coefficients (Kd) of REEs, as well as Sr, Y, Ba, Th, and U, between α-HIBA
at pH = 4.50 and AG50W-X8 cation-exchange resin, obtained by batch
equilibration experiments. For all 19 elements, the distribution coefficients
decrease with increasing acid concentration. For the REEs, a linear
relationship is observed in log−log space between Kd values and α-HIBA molarity. While the Kd values have been calibrated at pH =
4.50, formulas are provided allowing recasting of the Kd values at any pH. To test the accuracy of the data, we compare elution
curves simulated using the newly determined distribution coefficients to actual elution curves. The close agreement between
simulated and experimental elution curves demonstrates that the distribution coefficients obtained in this study are effective to devise
multielement extraction and purification scheme for high-precision elemental and isotopic analyses of REEs for various applications.
KEYWORDS: distribution coefficients, extraction chromatography, REEs, α-HIBA, AG50W-X8 resin

1. INTRODUCTION

The characterization of isotopic variations for the rare-earth
elements (REEs) has found diverse applications in the fields of
geo- and cosmochemistry.1−14 For instance, the Sm−Nd decay
system, which is arguably the best-known and most-studied of
the REE systematics, contains two radiogenic isotopes (147Sm→
143Nd, t1/2 = 106 Byr;

15 146Sm→ 142Nd, t1/2 = 103Myr16) which
are widely used in (i) geochronology,17,18 (ii) the tracing of
mantle sources,19,20 and (iii) the study of the differentiation
history of planetary silicate reservoirs.2,21−23 In cosmochemistry,
Nd nucleosynthetic anomalies have recently proven to be critical
to our understanding of planetary formation and early solar-
system dynamics.3,4,24 In recent years, high-precision isotopic
investigations of other REE systematics have also been
pioneered (e.g., Ce, Eu, Dy, Er, and Yb isotopes)5,25−28 as new
possible tools to solve geo- and cosmochemical questions,5,29,30

revealing a growing need for robust purification protocols for all
REEs.
Geochemically, REEs are well known for their near identical

behavior, which stems from (i) their very similar ionic radii, and
(ii) the fact that most of these metal ions exist primarily in the
trivalent oxidation state in geological samples (Eu and Ce can
also exist as Eu2+ and Ce4+, respectively). These characteristics
make the separation of REEs especially difficult.31 As the most
well-studied REE isotope system, methods for separating Sm

and Nd2,23,32−39 are well established. To a lesser extent, routine
protocols also exist for Lu (part of the Lu−Hf system),40−44 Ce
(part of the La−Ce system),28,45−49 and Sm/Gd (for character-
ization of cosmogenic effects).50−54 For high-precision isotopic
investigations of other REE systems, optimized methods are not
yet readily available.
To streamline the development and optimization of REE

purification protocols, knowledge of the partition behavior of
the elements of interest between the eluent and the resin is
necessary. The affinity of a resin for a particular element is given
by a distribution coefficient,Kd, which quantifies the partitioning
of the element between the eluent (mobile phase) and the
extractant (stationary phase) and is defined as

K C C/d s l= (1)

where Cs is the concentration of the element exchanged with the
resin, in μg per gram of dry resin, and Cl is the concentration of
the element remaining in the solution after the equilibrium has

Received: October 1, 2020
Revised: December 2, 2020
Accepted: December 2, 2020
Published: December 15, 2020

Articlehttp://pubs.acs.org/journal/aesccq

© 2020 American Chemical Society
55

https://dx.doi.org/10.1021/acsearthspacechem.0c00273
ACS Earth Space Chem. 2021, 5, 55−65

D
ow

nl
oa

de
d 

vi
a 

C
A

L
IF

O
R

N
IA

 I
N

ST
 O

F 
T

E
C

H
N

O
L

O
G

Y
 o

n 
Fe

br
ua

ry
 1

9,
 2

02
1 

at
 0

0:
22

:0
1 

(U
T

C
).

Se
e 

ht
tp

s:
//p

ub
s.

ac
s.

or
g/

sh
ar

in
gg

ui
de

lin
es

 f
or

 o
pt

io
ns

 o
n 

ho
w

 to
 le

gi
tim

at
el

y 
sh

ar
e 

pu
bl

is
he

d 
ar

tic
le

s.

https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Haoyu+Li"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Franc%CC%A7ois+L.+H.+Tissot"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Seung-Gu+Lee"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Eugenia+Hyung"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/doSearch?field1=Contrib&text1="Nicolas+Dauphas"&field2=AllField&text2=&publication=&accessType=allContent&Earliest=&ref=pdf
https://pubs.acs.org/action/showCitFormats?doi=10.1021/acsearthspacechem.0c00273&ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.0c00273?ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.0c00273?goto=articleMetrics&ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.0c00273?goto=recommendations&?ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.0c00273?goto=supporting-info&ref=pdf
https://pubs.acs.org/doi/10.1021/acsearthspacechem.0c00273?fig=abs1&ref=pdf
https://pubs.acs.org/toc/aesccq/5/1?ref=pdf
https://pubs.acs.org/toc/aesccq/5/1?ref=pdf
https://pubs.acs.org/toc/aesccq/5/1?ref=pdf
https://pubs.acs.org/toc/aesccq/5/1?ref=pdf
http://pubs.acs.org/journal/aesccq?ref=pdf
https://pubs.acs.org?ref=pdf
https://pubs.acs.org?ref=pdf
https://dx.doi.org/10.1021/acsearthspacechem.0c00273?ref=pdf
https://http://pubs.acs.org/journal/aesccq?ref=pdf
https://http://pubs.acs.org/journal/aesccq?ref=pdf


been achieved between the mobile and the stationary phases, in
μg per mL of solution. For REEs, one of the most widely used
separation techniques is the α-hydroxyisobutyric acid (α-HIBA)
ion-exchange chemistry,10,18,32,34,55−72 in which the eluent is the
α-HIBA, (CH3)2−COH−COOH, and the stationary phase is
the AG50W-X8 strong cation-exchange resin. α-HIBA is a weak
acid with a pKa (pKa = −log10(Ka), where Ka is the acid
dissociation constant) of 3.79. Despite its popularity, a dearth of
distribution coefficient data exists for this particular eluent/resin
combination, making calibrations of REE separation an
unnecessarily lengthy process of trial and errors.
Here, we report the determination of distribution coefficients

of the REEs, as well as Sr, Y, Ba, Th, and U between α-HIBA at
pH = 4.50 (±0.01) and the AG50W-X8 resin over a range of
molarities from 0.010 to 2.123 M α-HIBA. Although the REEs
are the focus of this paper, Sr, Ba, Y, Th, and U were also
investigated to better assess how similar their partition behavior
is compared to REEs during the α-HIBA chemistry73,74 and
should separation of these elements be necessary to avoid matrix
effects. While these Kd values have been calibrated at pH = 4.50,
formulas are provided allowing recasting of the REEs Kd values
at any pH. To test the accuracy of the REE distribution
coefficients, we compare simulated elution profiles to both
coarse (used for concentration determinations) and fine (used
for high-precision isotopic analyses) experimentally determined
elution curves.

2. EXPERIMENTAL SECTION
2.1. Reagents and Analytical Materials. AG50W-X8

resin (200−400 mesh, hydrogen form) was purchased from Bio-
Rad, and α-HIBA from Alfa Aesar, as 2-hydroxyisobutyric acid
(99% dry wt, molar mass 104.11 g/mol). Other acids used in this
work (HCl, HNO3) were procured at the analytical grade and
double distilled in quartz and/or PTFE Teflon distillation units
(PicoTrace at University of Chicago; Savillex at Caltech). Milli-
Q water (Millipore, resistivity > 18.2 MΩ/cm) was used for
cleaning, acid dilutions, and chromatography. All Teflon labware
were precleaned with successive leaching in boiling nitric acid
and aqua regia. All chemical treatments in this study were
performed inside a clean laboratory environment, at room
temperature.
2.2. Preparation of α-HIBA Solutions. For Kd batch

experiments, the α-HIBA stock solution was prepared in
glassware precleaned by rinsing in 10% vol HCl, followed by
overnight immersion in 6MHCl on a hot plate. α-HIBA powder
weighing 208.30 g was dissolved in 650mL ofMilli-Q (hereafter,
MQ) water and left to react for 2 h, after which the solution was
filtered to remove any nondissolved acid particles. For reference,
the solubility of α-HIBA in water is 484 g/L. Filtration took 6 h
and was done with a PTFE-faced funnel, base glass filter holder,
and 0.45 μm Fluoropore hydrophobic PTFE membranes
(Millipore), prewetted with alcohol. The pH of the filtered
solution was adjusted to 4.50 by the addition of 95 mL NH4OH
(ammonium hydroxide; pKb = 4.77, pKb =−log10(Kb), whereKb
is the base dissociation constant) solution. The pH-adjusted
solution (718.48 g) was transferred into a triple-cleaned Teflon
bottle and diluted with MQ-water to a final weight of 1000.04 g,
corresponding to an α-HIBA concentration in the final solution
of ∼2.123 M.
For the elution conducted at Caltech (Elution 2 in

Discussion), a 0.2 M α-HIBA stock solution was prepared by
adding MQ-water to 41.64 g of α-HIBA powder in a graduated
cylinder until the solution volume added up to 2.00 L. The pH of

the 0.2M α-HIBA solution was subsequently adjusted to 4.62 by
adding ∼36 mL of Optima-grade NH4OH.

2.3. Batch Equilibration Experiment. Distribution
coefficients were determined through batch equilibration of
the elements of interest in various molarities of the α-HIBA
solution. From the α-HIBA stock solution (2.123 M), twenty-
four dilutions were prepared covering the molarities between
0.010 and 1.064 M. A multielement mixture containing the 14
REEs, as well as Sr, Y, Ba, Th, and U, was prepared by adding
∼3.6 g of single-element inductively coupled plasma mass
spectrometry (ICP−MS) standard solutions (each 1000 ± 5
ppm, SPEX CertiPrep). These solutions are available in a
combination of dilute HF, H2O2, HCl, and/or HNO3. If present
in solution during the batch equilibration, even trace amounts of
these reagents could potentially modify the partitioning of
elements between the resin and solution. To avoid such
complications, aliquots of standard solutions were transferred to
a precleaned Teflon beaker and evaporated to dryness. Right
before complete evaporation, the residual droplet was taken
back into 5 mL of 3 M HNO3, transferred to a clean centrifuge
tube, and diluted with MQ-water to 50 mL (0.3 M HNO3).
Remaining insoluble particles were removed by centrifugation,
after which an aliquot of the multielement standard solution was
sampled, diluted, and analyzed by MC−ICPMS. All elements
added to the standard were detected at levels of at least three
orders of magnitude above blank 0.3MHNO3 solutions, and the
concentrations of each element in the multielement solution
were ∼72 ppm.
The AG50W-X8 resin was precleaned and converted to

ammonium form in a 1 L Teflon column with MQ-water (3
column volume; cv), followed by a 6 M HCl rinse (3 cv) and
anotherMQwater rinse (3 cv). The resin was then transferred to
a triple cleaned Teflon bottle, soaked in 1 M NH4OH for 1 h,
rinsed with MQ-water (2 cv), and finally soaked in MQ-water
(i.e., neutral pH, ammonium form).
The protocols for the equilibration experiments were

modified from those described in ref 75. Batch experiments
were conducted in α-HIBA solution ranging from 0.010 to 2.123
M. For each molarity, 4.7 mL of cleaned resin (equivalent to 2 g
of dry mass) was pipetted into a precleaned Teflon beaker and
dried on a hot plate at∼60 °C to remove the water remaining in
the resin. Then, 10 mL of α-HIBA solution at the adequate
molarity for the equilibration was added to the beakers and left
to equilibrate overnight to convert the resin to the α-HIBA form.
The solution was then pipetted out, and the beakers were placed
in a blowing hood to dry the resin. In another clean Teflon
beaker, the molarity specific standard solution was prepared by
adding 0.2 mL of the ∼72 ppm multielement standard solution
(0.3 M HNO3) into 7 mL α-HIBA solution at the chosen
molarity (0.010−2.123 M α-HIBA). A 1 mL aliquot of the
solution was saved and used as a standard for concentration
normalization. The remainder of the molarity-specific standard
solution (6mL, containing∼12.4 μg of each element of interest)
was added to the resin, resulting in an element to resin ratio of
∼6.2 μg/g. The resin and the acid-standard solutions were
stirred by placing the beakers on a Thermolyne Vortex shaker
(1000 rpm) for 5−10 min every 2 h. After 8 h of equilibration,
the mixture was filtered using precleaned Bio-Rad Poly-Prep
chromatography columns, to separate the resin from the mobile
phase. The acid solutions were collected in centrifuge tubes and
transferred back into cleaned Teflon beakers. The equilibrated
solutions (hereafter “sample”) and the nonequilibrated aliquots
(hereafter “standard”) were dried on a hot plate and taken back
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into 5 mL of 0.3MHNO3. For each “sample” and “standard”, an
aliquot was taken and diluted 20-fold to achieve concentrations
of at most ∼100 ppb for an element that would have remained
entirely in the liquid phase during the equilibration experiment.
2.4. Mass Spectrometry. Concentration measurements on

the diluted “sample” and “standard” solutions were performed
on a Thermo Finnigan Neptune MC−ICPMS at the Origins
Lab, following a protocol modified from ref 76. In brief, the 14
REEs were measured using 3 cup subconfigurations with 159Tb,
141Pr, and 169Tm on the axial Faraday cup, respectively. Then,
88Sr, 89Y, 138Ba, 232Th, and 238U were measured in the center cup,
in five successive subconfigurations (i.e., peak jumping) (Table
1). Measured isotopes were selected with preference given to
higher relative abundances and absence of isobaric/polyatomic
interferences. The 0.3 M HNO3 solutions were introduced into
theMC−ICPMS using a 100 μL/min PFATeflon self-aspirating
nebulizer. Measurements were performed in wet plasma mode,
using a combined quartz cyclonic and Scott-type spray chamber
(Stable Introduction System from ESI). Instrumental drift was
corrected for by bracketing every batch of three unknowns with a
multielement standard solution (std−smp−smp−smp−std).
The procedural blank and acid contributions (generally < 1%)
were subtracted from each analysis.
For the elution conducted at Caltech (Elution 2),

concentration in each elution cut was measured using an
iCAP RQ (Thermo Fisher) ICP−MS and an SC-2 DX
autosampler (Elemental Scientific). Instrumental tuning param-
eters (e.g., nebulizer gas flow, torch alignment, sample uptake
rate, and quadrupole ion deflector) were optimized to pass the
standard performance check using an iCAP Q/RQ solution
(Thermo Fisher Scientific) containing 1.0 ppb Ba, Bi, Ce, Co, In,
Li, and U in 2% HNO3 and 0.5% HCl. After tuning, REE
standard solutions covering a range of concentrations were
measured to generate calibration curves that establish the signal
to concentration correspondence (i.e., counts per second per
ppm) for the analytical session. Analyses were conducted in the
STDmode. The typical signal variability from instrumental drift
in these conditions is around ±1% within any given session.
2.5. Elution Tests.We conducted two elution tests to assess

the accuracy of the distribution coefficients obtained from the
batch equilibration experiments. Matrix elements were omitted
in the artificial solution used in these tests as REE separation are
typically performed on a preconcentrated REE fraction after
removal of matrix elements in the sample.
Elution 1 was conducted at the Origins Lab (University of

Chicago) at room temperature by using a custom-made quartz
column (1.9 mm ID × 21 cm length) to achieve a bulk
separation for concentration measurements. A multielement

standard solution containing 10 ppm of each REE was loaded on
the column filled with AG50W-X8 resin (200−400 mesh) in 1
mL 0.06 M α-HIBA. Lu, Yb, and Tm were eluted with 36 mL of
0.06M α-HIBA, followed by Er, Eu, Sm, and Nd in 16 mL of 0.2
M α-HIBA and finally Pr andCe in 10mL of 0.3M α-HIBA. The
concentration measurements were performed with the same
experimental setup as the distribution coefficient measurements,
and the yield for each REE was above 90%.
Elution 2 was conducted at the Isotoparium (Caltech) with a

borosilicate column (2.0 mm ID × 30 cm length) at ambient
temperature and pressurized to 1.0 psi (frit porosity: 35 μm)
using compressed air, which produces a fine separation of Ce−
Nd−Sm for high-precision isotopic analysis of Nd. The flow rate
was 1 drop/min, and each elution fraction consisted of four
drops (∼47 μL/drop). A standard mixture with 60 ppm of each
REE was loaded on the column filled with AG50W-X4 resin
(200−400 mesh) in 150 μL of 0.75 M HCl, and an isocratic
elution was done with 8.3 mL of 0.2 M α-HIBA at a pH of 4.62.
Elution fractions were collected in four drop increments in 5 mL
Teflon vials, dried down at 90 °C, and redissolved into 0.48 M
HNO3. Concentrations were measured on the iCAP RQ ICP−
MS, and yields for all REEs were above 90%.

2.6. Elution Simulations.To simulate the elutions, we used
an optimized (∼18× faster) version of the Mathematica code
from ref 77, which is based on the plate theory of
chromatography developed by Martin and Synge.78 The plate
theory states that a chromatographic column can be divided into
a finite number of theoretical plates of defined height (noted
HETP, for height equivalent to a theoretical plate). Within each
plate, and at any point in time, equilibrium is achieved between
the liquid (mobile) phase and the solid (stationary) phase.
Using this framework, it is possible to model the behavior of
elements onto a resin and test various elution schemes to
optimize the separation of the elements of interest. The
architecture of the simulation code is summarized in Table S1.
This simulation code (Supporting Information) allows users to
model the behavior of elements onto a specific resin and rapidly
test complex elution schemes to optimize the separation of the
elements of interest prior to implementation in the laboratory.
Sensitivity tests were performed to evaluate the influence of
uncertainties on parameters such as column dimensions (i.e.,
length and radius) and resin properties (i.e., porosity and
density) (Figure S1). Within the accuracy of typical
determination of these parameters, they do not influence the
results of the simulations presented here.

Table 1. Faraday Cup Configuration Used for REE Concentration Measurements on the MC−ICPMSa

configuration L4 L3 L2 L1 axial H1 H2 H3 H4

main 149Sm 151Eu 157Gd 159Tb 163Dy 165Ho 167Er

sub sequence 1 139La 140Ce 141Pr 146Nd

sub sequence 2 167Er 169Tm 173Yb 175Lu

sub sequence 3 88Sr

sub sequence 4 89Y

sub sequence 5 138Ba

sub sequence 6 232Th

sub sequence 7 238U
a167Er was measured twice: in the main sequence and in subsequence 2. The results from these two measurements agreed with each other within
error, so distribution coefficients of Er were calculated as the mean of the two measurements.
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3. RESULTS

3.1. Distribution Coefficients. To calculate the distribu-
tion coefficients for each element (i.e., μg of element per g of
resin divided by μg of element per mL of solution), an extended
form of eq 1 was used as follows

K
C C V

w
( / 1)

d
b a=

− ×
(2)

where Cb and Ca are the elemental concentrations in ppm in the
solution before and after equilibration, respectively, w is the
weight of dry AG50W-X8 resin in grams, and V is the volume of
acid solution in mL. The distribution coefficients are given in
Table 2 and Figure 1 (base-10 logarithmic scale). For a given
concentration, a high Kd value means that the element is
preferentially retained on the resin, while a low Kd indicates the
release of the element to the mobile phase. Only values within
the range 10 < Kd < 104.5 are considered reliable in this study,
because below 10, insufficient change in the solution
concentrations occur, while above 104.5, solution concentrations
approach the detection limits of the MC−ICPMS.

For all 19 elements investigated, the distribution coefficients
decrease with increasing α-HIBA molarity (Figure 1). For the
REEs, a negative linear relationship is observed between
distribution coefficients and α-HIBA molarity in a log−log
space. As α-HIBA forms stronger complexes with heavier
REEs,79 at a given molarity, lighter REEs have higher Kd than
heavier REEs, and elution occurs in decreasing order of atomic
numbers.73,80 Table 3 gives the linear regression statistics for
each element, and the best-fit lines are shown in Figure 2. Slopes,
intercepts, and the goodness of fits are determined using the
LINEST function in Microsoft Excel. R2 values on these
regressions range from 0.987 to 0.998. The equations include a
pH term, to account for Kd variations as a function of the α-
HIBA solution pH (see below).

3.2. Accounting for pH Variations. The mobile phase pH
can significantly influence the Kd values of REEs for the α-HIBA
chemistry.58,81 Indeed, as a weak monobasic acid, the
dissociation of α-HIBA is described by the chemical reaction

HIBA H L[ ] ↔ [ ] + [ ]+ − (3)

Figure 1.Distribution coefficients of (a) REEs and (b) Ba, Sr, Y, Th, and U on AG50W-X8 resin as a function of α-HIBAmolarity. Only values within
the 10 < Kd < 104.5 range are considered reliable and reported in Table 2. For Kd < 10 (lower grey band), insufficient change in the solution
concentrations occurred, while above 104.5 (upper grey band), the analyte concentrations approached the limits of detection of the instrument.

Table 3. Linear Regression Statistics for Determination of REE Kd as a Function of α-HIBA Molaritya

element equation r2

La log10(Kd) = −(4.83 ± 0.30) [log10([HIBA]) + pH-4.50] − (0.73 ± 0.21) 0.989
Ce log10(Kd) = −(4.77 ± 0.35) [log10([HIBA]) + pH-4.50] − (1.08 ± 0.25) 0.988
Pr log10(Kd) = −(4.81 ± 0.32) [log10([HIBA]) + pH-4.50] − (1.35 ± 0.26) 0.991
Nd log10(Kd) = −(4.84 ± 0.32) [log10([HIBA]) + pH-4.50] − (1.56 ± 0.27) 0.991
Sm log10(Kd) = −(5.07 ± 0.45) [log10([HIBA]) + pH-4.50] − (2.30 ± 0.43) 0.992
Eu log10(Kd) = −(5.11 ± 0.44) [log10([HIBA]) + pH-4.50] − (2.63 ± 0.42) 0.993
Gd log10(Kd) = −(5.05 ± 0.27) [log10([HIBA]) + pH-4.50] − (2.54 ± 0.27) 0.997
Gd* log10(Kd) = −5.28 [log10([HIBA]) + pH-4.50] − 3.00
Tb log10(Kd) = −(5.44 ± 0.64) [log10([HIBA]) + pH-4.50] − (3.54 ± 0.71) 0.990
Dy log10(Kd) = −(5.45 ± 0.72) [log10([HIBA]) + pH-4.50] − (3.85 ± 0.80) 0.987
Ho log10(Kd) = −(5.88 ± 0.79) [log10([HIBA]) + pH-4.50] − (4.61 ± 0.93) 0.991
Er log10(Kd) = −(5.92 ± 0.56) [log10([HIBA]) + pH-4.50] − (4.98 ± 0.75) 0.996
Tm log10(Kd) = −(5.99 ± 0.54) [log10([HIBA]) + pH-4.50] − (5.30 ± 0.72) 0.996
Yb log10(Kd) = −(5.67 ± 0.55) [log10([HIBA]) + pH-4.50] − (5.05 ± 0.77) 0.998
Lu log10(Kd) = −(5.76 ± 0.54) [log10([HIBA]) + pH-4.50] − (5.33 ± 0.76) 0.998

aUncertainties of slope and y-intercept are reported as two standard errors. Gd* represents the corrected regression statistics of Gd (recommended
value, see text for details).
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where L represents the ligand of α-HIBA. Through the
dissociation constant of this reaction, the ligand concentration
can thus be expressed as

K
L

HIBA
H

a[ ] =
[ ]
[ ]

−
+ (4)

or in log form, as

KpL log ( L ) p pH log ( HIBA )10 a 10= − [ ] = − − [ ]−
(5)

This relationship is well known, and for instance, Deelstra and
Verbeek58 showed that the log10(Kd) of the REEs was linearly
related to pL. At constant pH, the ligand concentration (which
determines the value of the partition distribution, Kds) is only a
function of the α-HIBA molarity (see Figure 2).
As shown by eq 5, changes in ligand concentration can be

similarly produced by variations in α-HIBA molarity or pH.
Although the Kd values reported here were obtained at constant
pH (=4.50), these values can be adjusted to account for changes
in pH by equating them to the change in molarity that would be
needed to maintain a constant ligand concentration. For
instance, if the pH of α-HIBA solution is changed by ΔpH,
the following relationship can be written as follows

KpL p (pH pH) (log ( HIBA ) pH)a 10= − + Δ − [ ] − Δ
(6)

A pH change of magnitude +ΔpH is therefore equivalent to a
change in log α-HIBA molarity of magnitude−ΔpH. For any α-
HIBA molarity, the appropriate Kd values at different pH values
can simply read on Figure 2 by moving horizontally by −ΔpH
(relative to the pH = 4.50). Mathematically, this means
modifying the intercepts of the linear regression equations in
Table 3 by a value m ×ΔpH (where m is the slope of regression
lines). In Table 3, we present general formulas accounting for
pH difference relative to the calibration pH of 4.50.

4. DISCUSSION
4.1. Correction of the Gd Distribution Coefficients.

Unlike other REEs, the distribution coefficients of Gd and Eu
obtained from the batch experiments overlap. If correct, this

would indicate that both elements should elute together during
the α-HIBA chemistry, which conflicts with observations in
previous studies.58,59,61−65,82−84 The apparently higher distri-
bution coefficients measured for Gd are very likely due to
141Pr16O interferences. At a given α-HIBA molarity, the
distribution coefficient of Pr is always larger than that of Gd.
Hence, the impact of the PrO interference on Gd in the
nonequilibrated solution is larger than in the equilibrated
solution, leading to systematically higherKd values for Gd. Using
a quartz spray chamber for sample introduction into the MC−
ICPMS (as was done here) typically produces several to several
tens of percent of Pr oxide, which significantly affects the
determination of Gd Kd values (Supporting Information). This
effect was, unfortunately, not precisely quantified during mass
spectrometric analysis. However, a correction of the Gd Kd
values is possible when considering theKd values across all REEs.
To first-order, electrostatics controls REE partitioning on the

cation-exchange resin. Elements with smaller ionic radii and
higher charge densities are expected to be surrounded by larger
hydration spheres, which in turn decreases the surface charge
density and the affinity for the resin (i.e., hydrated radius
decreases with increasing ionic radius and vice versa).85

Accordingly, log10(Kd) should thus depend linearly on the
reciprocal of the ionic radius.31 Figure 3 shows the slope (a) and

intercept (b) of the log10(Kd) versus log10([HIBA]) best-fit lines
for all REEs, plotted against the reciprocal of the ionic radius
(radii from ref 86). Both the slope and the intercept of the best-
fit lines are linearly correlated to the reciprocal of the ionic
radius. Interestingly, Gd falls off the 95% CI of the intercept
versus 1/r correlation defined by the other REEs (Figure 3b). It

Figure 2. Distribution coefficients of REEs on AG50W-X8 resin in
logarithmic scale as a function of α-HIBA molarity. Dotted lines show
linear regressions using partition coefficients between 10 and 104.5 (see
equations in Table 3). The dotted-dashed line represents the corrected
distribution coefficients of Gd (see text for details).

Figure 3. Slope (a) and intercept (b) of the linear regressions, as shown
in Figure 2, as a function of the reciprocal of ionic radii.86 The open
symbol denotes Gd* (see text for details).
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is also slightly offset from (although within uncertainty of) the
correlation defined by other REEs in the slope versus 1/r space
(Figure 3a). By bringing Gd on the regression lines defined by
other REEs in Figure 3a,b, we obtain a new value of the slope and
intercept of the log10(Kd) versus log10([HIBA]) best-fit line,
referred to in Tables 2 and 3 as Gd*. Wewill show below that the
corrected values for Gd* accurately predict the position of the
Gd peak in our elution tests, and therefore, we recommend use
of the corrected Gd* values.
4.2. Comparison of Actual and Simulated Elution

Curves. To avoid potentially unsuccessful and time-consuming
elution tests when trying to optimize a separation protocol, an
efficient approach consists in using a computational chromatog-
raphy code to simulate the elution results. Knowledge of the
distribution coefficients of the elements of interest in each
elution step is, however, a prerequisite to perform such
simulations. To test the reliability of the distribution coefficients
obtained in this study, we carried out simulations to try and
reproduce two elutions using different column sizes and
experimental setups. The accuracy and applicability of the Kd

reported here are assessed by inspecting the consistency of the
simulated and actual elution curves.
Elution 1: a gravity-driven separation of most REEs was

conducted using a custom-made quartz column (see Figure 4
and Section 2.5), and the simulated results are shown in Figure
4b. While theKd values calculated using the regression, as shown
in Table 3, mainly impact peak position, the HETP mainly
controls peak width and was determined to be 0.50 ± 0.20 mm
(by adjusting the value of the HETP to fit the actual elution
profile). Overall, the simulation successfully reproduces the
actual elution. To perfectly match the heavy REE peak position,
the α-HIBA molarity of the first elution step had to be very
slightly adjusted, from the 0.060 M value used in the actual
elution to 0.058 M. This slight (3.3%) discrepancy likely stems
for the imprecision associated with the preparation of such a
dilute α-HIBA solution (during the batch experiment and/or the
elution).
Elution 2: as the α-HIBA chemistry is widely used for Nd

pu r ifi c a t i on f o r h i gh - p r e c i s i on i s o t ope an a l y -
sis,10,18,32,34,66,67,70−72 our second comparison aimed at testing
the usefulness of the reported Kd values when predicting fine-

Figure 4. (a) Experimental elution profile of REEs using a gravity-driven quartz column: 1.9 mm ID × 21 cm length. Condition: AG50W-X8 resin
(200−400 mesh) with α-HIBA (pH = 4.50), at room temperature (∼22 °C). (b) Simulated elution profile, assuming: resin porosity, 49%;88 density of
the extractant-loaded beads, 0.70 g/mL; (HETP = 0.50 ± 0.20 mm).

Figure 5. (a) Experimental elution profile of REEs using a pressurized (1.0 psi) borosilicate column (2.0 mm ID × 30 cm length), with AG50W-X4
resin (200−400mesh) and α-HIBA (pH= 4.62), at room temperature (∼22 °C). The resulting flow rate was 47 μL/min. (b) Simulated elution profile,
assuming: resin porosity, 57%;88 density of the extractant-loaded beads, 0.70 g/mL; (HETP = 1.5 ± 0.2 mm).
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scale separations (i.e., drop-by-drop), even under slightly
different experimental conditions than those used for the Kd

determinations.We conducted an isocratic elution with 0.2M α-
HIBA on AG50W-X4 (200−400 mesh) at pH = 4.62 (Figure
5a). The resin cross-linkage and eluent pH were different from
those used for Kd determination, providing an adequate
challenge to test the reliability of our data and methods for
correcting pH effects. Given that both pH and resin cross-
linkage can influence the distribution coefficients,61,81,87 a
perfect match between the actual elution (X4 resin, pH = 4.62)
and simulated elution (X8 resin, pH = 4.50) was not expected
and was not obtained, even when accounting for the pH
difference as explained in Section 3.2. Indeed, the light REEs
eluted too late in the simulation, consistent with the general
tendency of Kd values to increase with higher cross-linkage.80

Adjusting the eluent molarity to 0.213 M (6.5% higher than the
actual α-HIBA molarity used) in Figure 5b produces an exact
match for the position of the Pr peak. The HETP was found to
be 1.5 ± 0.2 mm. At this molarity, the peak positions of Nd and
Ce are also satisfactorily matched. While Sm and the heavier
REEs are predicted to elute too early, we note that the Kd values
of these elements at this molarity were below the detection limit
of the batch equilibration experiments, and we are thus working
beyond the validity domain of the best-fit lines used to predict
the Kd values (Table 3). The small (6.5%) adjustment in
molarity accounts for the combined impact of all systematic
biases (resin cross-linkage, eluent molarity offsets, and other
experimental conditions such as T), which are only resolvable
owing to the drop-by-drop (i.e., fine-scale) nature of the elution.
Overall, this test shows that direct optimization of fine-scale

(i.e., drop-by-drop) REE elution cannot rely solely on the Kd

values reported herein, but that systematic adjustment of these
Kd values can produce reliable elution curves over the domain of
validity of the best-fit lines provided in Table 3. For practical
purposes of fine-scale elutions, conducting a preliminary elution
is necessary in order to assess the systematic offset of Kd values
between this study and the actual experimental setup. Equipped
with such a first elution, the intercepts of the best-fit lines (Table
3) in log10(Kd) versus HIBAmolarity space can be modified to
anchor the Kd values to the specific experimental setup. After
such recalibration, the newly adjusted distribution coefficients
can be utilized to guide the fine-scale optimization of the elution
scheme.

5. SUMMARY

Batch equilibration experiments were performed to determine
the distribution coefficients of the REEs, Sr, Y, Ba, Th, and U on
the AG50W-X8 resin (200−400 mesh size) in α-HIBA solution
over a wide range of molarity. For REEs, the distribution
coefficients are found to decrease linearly with increasing α-
HIBA molarity (in log−log space). The accuracy of the
distribution coefficients was tested based on their capacity to
reproduce two elution curves obtained using different
experimental setups. The good agreement between the actual
elution profiles and simulated results demonstrates the accuracy
of the Kd values reported herein, which can therefore be used to
design novel separation schemes of REEs or optimizing existing
ones.
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