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Uranium isotopes (δ238U) have quickly become one of the most widely-used redox proxies in paleoceano-
graphic studies. The quantitative power of the δ238U proxy derives from the long marine residence time 
of uranium and the dominance of reduction in fractionating uranium isotopes during removal from sea-
water. The seawater δ238U value is therefore sensitive to the size of the anoxic sink, and by extension, 
the area of the seafloor overlain by anoxic waters. Leveraging the ability of carbonates to record and re-
tain the seawater δ238U value, and the ubiquity of carbonate sediments in the geologic record, numerous 
studies have quantified seafloor anoxia across ocean anoxic events, mass extinctions, and global climatic 
changes. In most cases, forward models of marine uranium isotope mass balance have been used, illus-
trating potential histories of seafloor anoxia during these events.
Here we show that there are multiple ways in which such forward modeling can lead to spurious in-
ferences of anoxia, including (i) the poor sensitivity of the δ238U proxy when fractional anoxia is high, 
and (ii) the inherent bias in generating illustrative forward model outputs in stratigraphic sections with 
expected anoxic intervals. We thus explore inverse modeling approaches to constrain the most likely his-
tory of seafloor anoxia for a given δ238U dataset, and ultimately develop a framework for doing so using 
Bayesian inference via Markov Chain Monte Carlo simulation. We show that this approach can recover 
simulated trends, and further reconstruct marine anoxia for eight published δ238U datasets. We find that 
some previous interpretations of anoxic seafloor extent were inaccurate, either because steady state was 
improperly assumed, or because the illustrative forward models used were poor fits to the data. In order 
to overcome these issues in future work with the δ238U redox proxy, we have made this model pub-
licly available, and also offer suggestions for the judicious use of forward models. By building on this 
framework, the future quantification of marine anoxia during transient environmental perturbations can 
be performed consistently, thereby facilitating robust comparison of anoxic extent between events.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

The oxygenation of the ocean dramatically restructured biogeo-
chemical cycles and paved the way for the emergence of animal 
life on Earth (Nursall, 1959). Since the rise of animals, intervals of 
extensive marine anoxia have resulted in biogeochemical perturba-
tions and occasionally mass extinctions (e.g., Wignall and Twitch-
ett, 1996). Quantifying the appearance of oxygen in Earth’s early 
history and its disappearance in more recent events is therefore a 
critical task when studying the role of redox in the evolution of life 
on our planet. Furthermore, understanding past marine redox fluc-
tuations allows us to reconstruct perturbations to biogeochemical 
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cycles, which holds implications for understanding future climate 
change.

In order to reconstruct oxygen levels in ancient seawater, many 
“paleo-redox proxies” are employed, which are typically elemental 
or isotopic characteristics of ancient marine sediments with some 
demonstrated sensitivity to redox conditions in the modern ocean. 
These proxies range in sensitivity from local to global and qualita-
tive to quantitative. Quantitative, global tracers of ancient marine 
redox conditions are of great interest, since – in the best case – 
they enable conclusions to be drawn about the global ocean when 
sampling a single locality. Using elements that have long marine 
residence times and thus are well-mixed in the ocean (e.g., Mo, Tl, 
U), a few global tracers have been developed, each with particular 
strengths and limitations. Among these is the uranium “stable” iso-
tope ratio (238U/235U, expressed in delta notation as δ238U), which 
in the two decades since natural δ238U variability was first analyti-
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cally resolved (Stirling et al., 2007; Weyer et al., 2008) has become 
one of the most widely-used proxies for global assessments of ma-
rine anoxia in deep time (e.g., Tissot and Dauphas, 2015; Lau et al., 
2019; Zhang et al., 2020b).

In Earth’s surface environment, uranium (U) exists in two main 
oxidation states: soluble U6+ that behaves conservatively in the 
modern ocean (i.e., [U] varies linearly with salinity, Ku et al., 1977; 
Owens et al., 2011), and insoluble U4+ . Because the mean oceanic 
residence time of U (τ ∼ 400 kyr; Ku et al., 1977; Dunk et al., 
2002) is much longer than the global ocean mixing time (1-2 
kyr; Broecker and Peng, 1982), the salinity-normalized seawater 
composition is homogeneous with regard to both U concentra-
tion ([U]SW = 3.24 ± 0.07 ng/g,1 for a salinity of 35 g/L, Chen 
et al., 1986) and isotopic ratio (δ238Usw = − 0.39 ± 0.02!; Tis-
sot and Dauphas, 2015). As U inputs to the ocean are dominated 
by continental weathering, with an isotopic composition identi-
cal to that of the continental crust (− 0.30 ± 0.04!; Tissot and 
Dauphas, 2015; Andersen et al., 2016), changes in δ238Usw are 
typically thought to be controlled by the isotopic fractionation as-
sociated with U removal into different oceanic sinks.

In particular, U removal via reductive immobilization (i.e., from 
U6+ in dissolved uranyl-carbonate complexes to U4+ in uraninite, 
non-crystalline U4+ phases, or organic matter complexes; see e.g., 
reviews in Lau et al., 2019; Zhang et al., 2020b) in anoxic and/or 
euxinic (anoxic + sulfidic) settings results in preferential incorpo-
ration of 238U in sediments. The magnitude of isotopic fraction-
ation observed in these settings is typically ∼ +0.6! relative to 
seawater (Andersen et al., 2014; Holmden et al., 2015; Rolison et 
al., 2017). This is roughly half of the estimated intrinsic fractiona-
tion factor of ∼ +1.3! predicted by nuclear field shift calculations 
(Bigeleisen, 1996) and observed in redox reaction experiments (Fu-
jii et al., 1989; Nomura et al., 1996; Brown et al., 2018), and is 
thought (e.g., Andersen et al., 2014; Lau et al., 2020; Zhang et al., 
2020b) to reflect the typical twofold reduction in expressed frac-
tionation in diffusion-limited settings such as sediment porewaters 
(e.g., Clark and Johnson, 2008). Although the uniformity of this 
expressed fractionation factor across environmental gradients has 
recently been questioned (e.g., Cole et al., 2020; Lau et al., 2020; 
Zhang et al., 2020b), including suggestions that anoxic, but non-
euxinic settings feature smaller expressed isotope fractionation, by 
considering here this high-end value of +0.6! we are effectively 
considering the abundance of environments such as those where 
this isotopic effect was observed (e.g., Black Sea, Saanich Inlet). 
One can add complexity to the mass balance by considering in-
termediate (e.g., “ferruginous”, “hypoxic”) sinks with intermediate 
scavenging rates and isotopic fractionations. However, to best com-
pare our results to previous work, we here utilize a simplified mass 
balance in which all other (“non-anoxic”) U sinks in aggregate are 
presumed to impart a negligible isotopic fractionation (Lau et al., 
2016; Zhang et al., 2020b). In this framework, the waxing and 
waning of the anoxic sink dictates the δ238Usw value: when the 
anoxic sink is larger, more 238U is scavenged from seawater, caus-
ing δ238Usw to become more negative (Fig. 1, Section 2.1).

Given the sensitivity of δ238Usw to the size of the anoxic sink, 
any archive that records δ238Usw in the past can be used to quan-
tify, through isotope mass balance, fluctuations in seafloor anoxia. 
While black shales (Asael et al., 2013; Kendall et al., 2015; Brüske 
et al., 2020) and ferromanganese crusts (Goto et al., 2014; Wang 
et al., 2016) have been investigated, both archives are isotopically 
fractionated relative to seawater, and most studies have instead 
targeted carbonates (reviewed in Lau et al., 2019; Zhang et al., 
2020b). Indeed, early work showed that modern primary carbonate 

1 Here and throughout the manuscript, errors are reported as 2σ unless other-
wise stated.

precipitates have δ238U values identical to that of modern sea-
water (Stirling et al., 2007; Weyer et al., 2008; Romaniello et al., 
2013; Andersen et al., 2014; Tissot and Dauphas, 2015). Further 
work confirmed that abiotic carbonate precipitation leads to mi-
nor isotopic fractionation (∼ 0.1!; Chen et al., 2017), and that 
many biological carbonate precipitates have even smaller offsets 
relative to δ238Usw (Chen et al., 2018b; Tissot et al., 2018). While 
diagenetic modification is always a concern in paleo-redox stud-
ies (Romaniello et al., 2013; Chen et al., 2018a; Tissot et al., 2018), 
and will be further discussed in Section 4.2, to a first-order car-
bonates hold great potential as archives of δ238Usw on geological 
timescales.

If one assumes that carbonate sediments (or any other geolog-
ical archives for that matter) indeed record δ238Usw on geological 
timescales, the remaining question is how to best relate these 
δ238U data to the amount of U sequestered in anoxic sediments 
and, ultimately, to the most likely extent of seafloor anoxia. To 
date, all studies have taken one of two approaches: (i) the marine 
U isotope mass balance is assumed to be at steady state, in which 
case each δ238U value (or the mean of the entire dataset) can be 
directly equated to the extent of seafloor anoxia (e.g., Bartlett et 
al., 2018; Zhang et al., 2018), or (ii) dynamic models are used to 
simulate transient perturbations to the marine U cycle (e.g., Jost et 
al., 2017; Lau et al., 2017; Clarkson et al., 2018, 2021;). In the lat-
ter case, studies have so far used only illustrative forward model 
outputs to assess marine anoxia using δ238U datasets.

As will be discussed below, these approaches can result in in-
accurate assessments of marine anoxia because of the dynamic 
nature of δ238U trends on up to Myr timescales. Here we show 
that these shortcomings can be readily addressed using an inverse 
modeling framework, as it quantifies the fit of forward model runs 
to the data, therefore allowing (i) determination of the best fit for 
a particular dataset, and thus, (ii) consistent comparison of trends 
between datasets. We first walk through a few possible ways to 
handle this inverse modeling, before describing an accessible, ro-
bust method for assessing δ238U and anoxia trends using a Markov 
Chain Monte Carlo (MCMC) approach. We demonstrate the utility 
of this method using published datasets, finding that our inverse 
model can in all cases describe the trajectory of the data, but in 
some cases implies seafloor anoxia trajectories that are different 
from those inferred using steady state assumptions or illustrative 
forward model runs. Overall, we find that this MCMC approach 
(available at www.github .com /m -kipp /d238U -inverse -model) will 
be a useful way for future applications of the δ238U proxy to rig-
orously quantify seafloor anoxia and robustly compare trends be-
tween different datasets in order to determine the magnitude of 
ocean anoxia during events in Earth history.

2. Methods

2.1. Uranium isotope mass balance

Fig. 1a shows a simplified marine U budget used in many paleo-
redox studies (e.g., Brennecka et al., 2011; Clarkson et al., 2018; 
Lau et al., 2016; Zhang et al., 2020a). It considers rivers as the 
sole U input to the ocean ( J riv), and two sinks: anoxic sediments 
( Janox) and all other sediments ( Jother). Although more complex 
formulations can be used to account for more than two sinks, we 
follow most previous work in using this simplifying assumption to 
derive first-order redox constraints. In this framework, the change 
in the U inventory of the ocean (Nsw ) over time can be written as:

d(Nsw)

dt
= J riv − Janox − Jother (1)

Accounting for the isotopic composition of riverine inputs (δ238Uriv) 
and the isotopic fractionation associated with U burial in anoxic 
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Fig. 1. (a) Simplified U isotope mass balance. Based on data and frameworks presented in Dunk et al. (2002), Andersen et al. (2014, 2016), Tissot and Dauphas (2015), and 
Lau et al. (2016). See Section 2.1 for details. (b) Steady state δ238Usw as a function of ocean anoxia (expressed as the proportion of U burial in anoxic sediments, F anox, top 
x-axis, or seafloor area covered by anoxic sediments, f anox bottom x-axis). At steady state, there is little difference in δ238Usw between oceans with ∼10% versus ∼100% of 
the seafloor anoxic. Adapted from Lau et al. (2017). (c) Fraction of oceanic response to a step-wise perturbation as a function of time.

($anox) and non-anoxic ($other) environments, changes in δ238Usw
are then described (as in Lau et al., 2016) by:

d(δ238Usw)

dt
=

(
J riv ∗

(
δ238Uriv − δ238Usw

)

− Janox ∗ $anox − Jother ∗ $other
)
/Nsw (2)

Quantification of oceanic anoxia can then be done in two ways: 
(i) as the proportion of U sequestered in the anoxic sink [Fanox =
Janox/( Janox + Jother)], or (ii) as the fraction of the seafloor that 
is anoxic ( fanox). We note that there is some inconsistency in the 
literature in the use of the term fanox . We recommend that the 
notations adopted here – which follow most previous work – be 
systematically used in future studies to avoid confusion. Uranium 
removal fluxes can be related to seafloor area as:

Janox = Nsw ∗ Kanox ∗ fanox (3)

Jother = Nsw ∗ Kother ∗ (1 − fanox) (4)

where Kanox and Kother are rate constants that describe the effi-
ciency of U burial in anoxic and non-anoxic sediments, respectively 
(as in Lau et al., 2016). Combining Equations (2), (3) and (4) allows 
δ238Usw to be cast as a function of fanox .

For the sake of clarity and completeness, we walk through a 
determination of the modern extent of seafloor anoxia using the 
latest understanding of marine δ238U systematics. The first step is 
determining the modern U flux into anoxic and non-anoxic sinks. 
Assuming the modern ocean is at steady state, Equation (2) be-
comes:

J riv ∗
(
δ238Uriv − δ238Usw

)
= Janox ∗ $anox + Jother ∗ $other (5)

Using published estimates (Appendix A) for J riv , δ238Uriv, 
δ238Usw, $anox, and $other, with Monte Carlo propagation of uncer-
tainty, we obtain an absolute U flux into anoxic sediments ( Janox) 
of 0.0063+0.0035

− 0.0028 Gmol U yr− 1, corresponding to Fanox = 15+8
− 7%. By 

mass balance, Jother must account for the other ∼85% of U burial.
These mass fluxes can be equated to the extent of seafloor 

anoxia (Eq. (3), (4)). Here, one can either (i) assume that the mod-
ern fanox value is known (i.e., using estimates from prior studies, 
e.g., Veeh, 1967; Bertine and Turekian, 1973), and then calculate 
the necessary rate constants, or (ii) constrain the rate constants 
with observations of U concentrations in modern sediments and 
overlying water, and then calculate a modern fanox value. We opt 
for the latter approach, as it allows us to confirm that our oceanic 

U budget indeed produces a reasonable, independent estimate of 
seafloor anoxia in the present day.

Areal U scavenging rates were determined in modern anoxic 
settings by Dunk et al. (2002). We can incorporate these con-
straints by writing the anoxic U burial flux as:

Janox = Ranox ∗ Aanox = Ranox ∗ Aocean ∗ fanox (6)

where Ranox is the areal scavenging rate of U in modern anoxic 
sediments (9.2 µ mol m− 2 yr− 1, range 4.6 to 13.8; Dunk et al., 
2002) and Aanox is the total area of anoxic seafloor in the mod-
ern ocean, which is the product of fanox and the total area of the 
global seafloor, Aocean (3.6 × 1014 m2; Turekian, 1969). It follows 
from Equations (3) and (6) that

Kanox = Ranox ∗ Aocean

Nsw
(7)

Solving using the modern U inventory (Nsw ) of 19,000 ± 1,200
Gmol U (Dunk et al., 2002), with propagation of uncertainties on 
Ranox and Nsw , gives a Kanox value of 1.74+0.68

− 0.63 × 10− 4 yr− 1. This 
equates (Eq. (3)) to a modern fanox value of 0.19+0.11

− 0.05%, similar 
to an earlier estimate of 0.21 ± 0.09% (Tissot and Dauphas, 2015) 
and in agreement with previous determinations based on U and 
Mo elemental mass balances (0.3%, Veeh, 1967; 0.23%, Bertine and 
Turekian, 1973). By mass balance, the corresponding Kother value is 
1.88+0.22

− 0.17 × 10− 6 yr− 1.

2.2. Forward modeling

With the above equations in place, we can explore the rela-
tionship between anoxia ( fanox) and δ238Usw. Let us begin with a 
steady state system. In this case, there is no change in amount or 
isotopic composition of U in seawater with time (LHS in Eq. (1) and 
(2) equal to zero), and using the parameters in Appendix A, one 
can calculate δ238Usw as a function of fanox (Fig. 1b). Because each 
fanox value corresponds to a single δ238Usw value (i.e., a bijective 
function), this framework allows a straightforward back calcula-
tion of marine anoxia: locate the position on the plot matching 
the measured δ238Usw value and retrieve the corresponding fanox
value.

This approach is only as valid as the steady state assumption. 
One way to assess the validity of this assumption is to follow 
Holland (1978) and calculate the response time of the marine in-
ventory of a given element to a single step-wise perturbation (see
Appendix B). Doing so reveals that the system only comes within 
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Fig. 2. Forward model runs under different f anox trajectories (a). Solid lines in (b) 
denote outputs using model equations in Section 2.1; dashed lines denote outputs 
of Zhang et al. (2020b). Inset in (b) shows recovery toward steady state value over 
1 Myr. Solid lines in (c) denote δ238Usw value if the system were in steady state 
at the current fanox value in (a). Note that δ238Usw can exceed the lowest possible 
steady state value during large, rapid perturbations.

1% of the new steady state after 5 residence times (Fig. 1c). Given 
its modern marine residence time of ∼400 kyr (Ku et al., 1977; 
Dunk et al., 2002), this means ∼2 Myr must pass for the marine 
U inventory to reach a new steady state following a step pertur-
bation. This implies that for datasets with < 2 Myr between δ238U 
datapoints (as is the case in most studies using the δ238U proxy), 
a dynamic model must be used to accurately recover fanox trends.

When the steady state assumption is invalid and a dynamic 
model is needed, a simple yet effective approach is to parame-
terize a secular trend in fanox and determine whether the result-
ing δ238Usw model trend resembles the data (e.g., Clarkson et al., 
2018). For instance, and to demonstrate that our formulation of 
U isotope mass balance agrees with prior work, we modeled four 
scenarios (from Zhang et al. (2020b), see their Fig. 9g), each repre-
senting a single pulse of anoxia of varying magnitude (Fig. 2a). The 
resulting δ238Usw trends (Fig. 2b, solid lines) match closely those 
of Zhang et al. (2020b) (Fig. 2b, dashed lines), indicating that our 
model agrees with previous formulations (the residual discrepancy 
is due to the fact that Zhang et al. modify J riv as a function of 
pCO2, which changes as a function of fanox). Importantly, this ex-
ercise also demonstrates the inappropriateness of the steady state 
assumption: δ238Usw values calculated assuming steady state at 
each time point (Fig. 2c) are very different from those in the dy-
namic model (Fig. 2b) because the system has not had time to fully 
respond to the forcing (and because during rapid, large perturba-
tions, δ238Usw can even exceed the minimum steady state value as 
the ocean gets quickly depleted of uranium).

One could in theory “hand-tune” this dynamic forward model 
to re-create δ238Usw trends in published datasets. This process 
would, however, not only be extremely time consuming, but also 
hindered by significant sources of inaccuracy. First, δ238Usw re-
sponds very little to changes in f anox > 10% and < 0.1% (Figs. 1b, 2). 

This means that even in dynamic models, there is little basis for 
a forward modeler to discern between a transient anoxic pulse 
of ∼60% versus ∼90% (the two would give rise to quite similar 
δ238Usw trajectories; Fig. 2b). Second, many δ238U datasets are gen-
erated using samples that have already been studied for the identi-
fication of ocean anoxia. This means that there are known intervals 
that are thought to have been anoxic; coupled with the insensitiv-
ity at high seafloor anoxia noted above, this could lead to bias in 
inferring moderate vs. severe anoxia when data are ambiguous. 
Lastly, when using only illustrative forward model outputs, it is 
unclear whether data points that fall off the simulated δ238Usw tra-
jectory can be explained via global U isotope mass balance. This is 
important because in some cases, rapid, positive δ238U excursions 
cannot be achieved by redox-influenced U isotope mass balance 
alone (e.g., Clarkson et al., 2018); in these cases, some of the sig-
nal must be attributed to diagenesis, but forward models alone 
leave this distinction ambiguous. For all of these reasons, here we 
utilize Bayesian inverse analysis – which has demonstrated util-
ity in paleoclimate and isotope geochemistry studies at a range 
of spatial and temporal scales (e.g., Tierney et al., 2019; Bowen et 
al., 2020; Krissansen-Totton et al., 2021) – to optimize model fits, 
propagate parameter uncertainties, and distinguish between com-
peting effects on isotopic data.

2.3. Inverse modeling

2.3.1. A Markov Chain Monte Carlo approach
Here, the term “inverse” modeling simply means that a quan-

titative framework is used to assess the fit of dynamic forward 
model outputs to a δ238U dataset. Doing so allows optimization of 
the fit to a δ238U dataset and recovery of the corresponding fanox
trend. There are multiple ways to approach this problem, which 
we walk through here to find an efficient and effective solution for 
the δ238U proxy.

First is the question of how to describe the temporal evolution 
of fanox . There are two approaches: numerical and analytical. In the 
numerical approach, one simply needs to assign an fanox value at 
each time point in a model run. This approach is flexible in that 
one need not describe a functional form for the fanox history; in-
stead one can simply “draw” a curve that looks appropriate. While 
this enables quick “hand-tuning” to fit a dataset, the numerical ap-
proach is computationally costly when trying to optimize the fit, 
because the possible permutations of fanox histories quickly be-
come very large (see Appendix C). This burden can be reduced by 
decreasing the temporal resolution in parts of the dataset that ap-
pear invariant; however, doing so could lead to unintentional bias 
influencing data interpretation.

In contrast, in the analytical approach, one can optimize the fit 
by tuning only a few parameters. Here, we consider the temporal 
evolution of fanox as a Fourier series:

d( fanox)

dt
=

m∑

i=1

ai ∗ sin(yi ∗ t) + bi ∗ cos(zi ∗ t) (8)

where a and b set the amplitude, and y and z set the period of 
oscillations. To describe complex fanox trajectories, several sets of 
sine and cosine terms can be included; in practice, we find m ≤ 10
to be sufficient in most cases. In this framework, we only need to 
optimize ai , bi , yi and zi to arrive at the best fit to a δ238U dataset 
– a more computationally tractable problem – which we consider 
below.

The next question is that of the “cost” function used to describe 
the fit of the model (δ238Umod) to the data (δ238Uobs). Here we use 
the negative log-likelihood (NLL) to quantify model fit (MacKay, 
2003), which is calculated as:

4
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NLL =
n∑

i=1

(δ238Uobs,i − δ238Umod,i)
2

2σ 2
i

+ ln(
√

2πσi) (9)

where n is the number of data points and σ is the uncertainty 
on each point. The best fit model has the lowest NLL. We note 
that other inverse modelers sometimes use different cost func-
tions, e.g., the Bayesian Information Criterion, which expands on 
the log-likelihood by penalizing models with more parameters; for 
simplicity we opt to utilize the NLL and leave the dimensionality 
of the model (m value) up to the user.

There are two schools of thought about how to optimize model 
fit (i.e., minimize NLL): Frequentist and Bayesian. The Frequentist ap-
proach is Maximum Likelihood Estimation (MLE). There are MLE 
functions available in scientific programming languages that often 
use derivative-based solvers to minimize the cost function. This is 
computationally efficient, but prone to getting stuck in local min-
ima. While some approaches can circumvent this issue (e.g., “basin-
hopping” algorithms), the problem becomes increasingly severe as 
the number of free parameters increases. In practice, this makes 
MLE a poor approach for optimizing the fit to δ238U datasets, as 
we need many free parameters (large m values in Eq. (8)) to sim-
ulate all plausible trends.

The Bayesian approach to optimizing model fit is Maximum A 
Posteriori estimation (MAP). The chief difference between MAP and 
MLE is that in MAP each parameter can be assigned a “prior” dis-
tribution. This is essentially saying that we have some knowledge 
about a parameter’s probability distribution when beginning the 
assessment. MLE can be considered a special case of MAP with 
uninformative “uniform” priors.

Importantly, MLE and MAP provide “point” estimates of the pa-
rameters that yield the best model fit. While uncertainties can 
be calculated for these point estimates, we are left without in-
formation about the probability distribution for each parameter. A 
widely-used approach for obtaining these probability distributions 
is Bayesian inference. Bayesian inference is often used to expand on 
MAP and provide posterior probability distributions for each model 
parameter. This is particularly useful for δ238U datasets, where we 
want to constrain a robust confidence interval for fanox . A com-
mon computational approach for Bayesian inference is the Markov 
Chain Monte Carlo (MCMC) method. The basic idea of MCMC is 
that by running many model iterations (105-106) while varying 
parameter values within a prescribed range, the model cost can 
be systematically minimized, approaching the “best fit” model. If 
the MCMC routine is run long enough that it can converge on the 
best solution, the posterior distribution of each parameter will be 
proportional to its true probability distribution (meaning we will 
have numerically approached a solution without analytically solv-
ing a very computationally-costly problem). Current MCMC formu-
lations typically utilize some version of the “Metropolis-Hastings 
algorithm” (Metropolis et al., 1953; Hastings, 1970), which pro-
vides an efficient method of preferentially “accepting” model runs 
that achieve a better fit, allowing the algorithm to converge on the 
optimal solution. Here we implement an adaptive MCMC routine 
(Haario et al., 2001) using the FME package in R (Soetaert and Pet-
zoldt, 2010).

Our MCMC workflow is shown in Fig. 3. The model begins by 
calculating the NLL (Eq. (9)) using values for each free parame-
ter ( fanox , ai , bi , yi , zi ) that yield the modern steady state, i.e., 
δ238Usw = − 0.39!, fanox = 0.2%, and d( fanox)

dt = 0 (Fig. 3a). The al-
gorithm then takes a “step” (Fig. 3b) by randomly selecting a new 
value for each of the free parameters from within a prescribed 
range (pmin to pmax). The forward model is then run again and 
the NLL is calculated. If the fit is better than in the previous step 
(NLLstep_i < NLLstep_i-1), the new parameter values replace the old 
ones; if the fit is worse, the new parameter values are rejected 
with probability P , where P = 1 – exp(NLLstep_i – NLLstep_i-1). This 

process is repeated for many steps (∼105-106, here niter), and the 
evolution of each parameter during these niter steps describes the 
path of what we call a “walker” (Fig. 3c). The first nburn− in steps of 
this “random walk” through parameter space are discarded, which 
allows the walker to “forget” where it started, meaning it is no 
longer biased by our choice of starting values. The rest of the walk 
then becomes the posterior distribution for a given parameter.

A single walker will eventually converge on the target distribu-
tion for each parameter, but as we want to propagate uncertainty 
on terms typically held constant (e.g., $anox, δ238Uriv) in the mass 
balance, we deploy many walkers (∼102, here nwalker) that sam-
ple from the uncertainty ranges for these “constants” (Appendix A) 
and concatenate their posterior parameter distributions (PPDs) at 
the end (i.e., the concatenated PPD for each parameter will con-
tain nwalker * (niter – nburn− in) values). Armed with these PPDs, a 
Monte Carlo simulation is done whereby the concatenated PPDs 
are randomly sampled many times (∼103, here nsens) while run-
ning the forward model, thus yielding optimized δ238Usw and fanox
trends (Fig. 3d), as well as confidence intervals (here outputs are 
shown as the median in solid lines and the 16th to 84th percentile 
in shaded regions, as distributions are non-Gaussian; Fig. 3e).

While this approach works in theory, there are, in practice, 
many issues to consider in order to ensure that an MCMC rou-
tine is converging on a solution. This includes tuning the number 
of steps taken by each walker (niter), the number of terms in the 
fanox expression (m), the range to be explored for each parame-
ter (pmin , pmax), the size of random steps through that parameter 
space (pstep), and whether the size of those steps is updated as 
the walkers progress (pupdate). As datasets differ in the number of 
data points, density of points, and magnitude of trends, the MCMC 
routine must be tuned for each individual case, with convergence 
demonstrated by approaching a minimized NLL value, among other 
criteria. A thorough discussion of convergence tests can be found 
in Appendix C.

2.3.2. Model calibration and sensitivity tests
To demonstrate that our MCMC approach can accurately recover 

trends using a “known” test case, we generated a synthetic dataset 
by selecting 40 time points from a modeled trend in Fig. 2b, with 
higher density around the perturbation than before and after (sim-
ulating typical data density in δ238U studies). The modeled δ238Usw
value at each time point became the “measured” value, to which 
we assigned a conservative analytical uncertainty (± 0.06!, 1σ ). 
We then fed this dataset to the MCMC routine and compared the 
recovered fanox trend to the trend that was used to force the 
model (Fig. 2a). Doing so revealed that the MCMC approach ac-
curately reconstructed the fanox trend (Fig. 4a).

Input parameter uncertainties: In addition to converging on a 
best fit trend under certain model assumptions (e.g., parameter 
values for modern mass balance), we aimed to allow our model 
to incorporate the uncertainty on those assumptions. To do so, 
we randomly sampled from the published or herein calculated 
parameter ranges for $anox, $other, δ238Uriv, Kanox , and Kother (val-
ues in Appendix A) when executing the MCMC routine. In this 
case, the model still found the correct fanox and Nsw trends, with 
only slightly greater uncertainty (Fig. 4b). Importantly, this demon-
strates that our model outputs are not unduly reliant on assump-
tions about modern U isotope mass balance.

Analytical noise: To further demonstrate the robustness of the 
MCMC approach, we made the recovery more difficult by introduc-
ing random noise (e.g., due to analytical inaccuracy) to the data 
points by adding a random number from a normal distribution 
with mean = 0! and 1σ = 0.06!. In this case, the MCMC rou-
tine still found the correct trend (Fig. 4c), even while propagating 
the uncertainty on mass balance parameters, demonstrating that 

5



M.A. Kipp and F.L.H. Tissot Earth and Planetary Science Letters 577 (2022) 117240

Fig. 3. Schematic representation of Markov Chain Monte Carlo routine employed in this study.

the model can fit trends through noisy datasets (we also experi-
mented with more complicated test cases; see Appendix C).

Timescales: We next aimed to demonstrate the timescales on 
which this inverse model can be robustly used. The ocean mixing 
time (1-2 kyr) sets a lower limit here, since the assumption of a 
well-mixed ocean is invalid on timeframes less than several ocean 
mixing times. We conservatively explored a 100 kyr lower limit 
here (i.e., data points every ∼2 kyr) and explored the ability of the 
model to recover a simple trend at increasingly longer timescales. 
We began with the fanox trend shown in Fig. 4 and applied it to 
shorter and longer time intervals. In doing so, we see that the in-
verse model properly identifies trends in all cases (Fig. 5). At longer 
timescales (Fig. 5d), while the inverse model can fit the trend, the 
steady state calculation becomes appropriate – and is much faster 
than running an MCMC routine. We therefore conclude that this 
inverse model is best applied to datasets that range from ∼105− 7

yr in duration, which in fact encompasses most work published to 
date using the δ238U proxy.

3. Application to published datasets

To demonstrate the model’s ability to reconstruct fanox trends 
in various contexts and to conduct a robust comparison of ma-
rine anoxia across events in Earth’s history, we applied our inverse 
model to eight published carbonate δ238U datasets in time in-
tervals ranging from the Ordovician to the Eocene (Fig. 6). These 
datasets all capture dynamic perturbations to the marine U cycle 
caused by expansions of marine anoxia, including mass extinction 
events (Fig. 6a-f), Cretaceous Ocean Anoxic Event 2 (Fig. 6g) and 
the hyperthermal event at the Paleocene-Eocene Thermal Maxi-
mum (Fig. 6h). The MCMC parameters required for efficient con-
vergence were different for each case, highlighting the importance 
of conducting an individual assessment of convergence (see Ap-
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Fig. 4. MCMC accuracy tests. Three scenarios are depicted: (a) dataset exactly equivalent to forward model output, (b) same dataset with Monte Carlo sampling of uncertainties 
on $anox, δ238Uriv, Kanox and Kother, (c) Monte Carlo error propagation plus random analytical noise introduced to dataset. Dashed lines in middle and lower panels denote 
forward model trajectory used to generate datapoints. In this and subsequent plots, the solid blue lines denote median MCMC outputs, and the 16th to 84th percentile 
window is shown in shading with increasing opacity toward the median. In all cases, the MCMC routine accurately recovers the correct fanox trend and seawater U inventory 
(Nsw), even when parameter uncertainties are taken into account and analytical noise is introduced. (For interpretation of the colors in the figure(s), the reader is referred to 
the web version of this article.)

Fig. 5. Age range tests. The same magnitude of perturbation was spread over increasingly longer time intervals: (a) 100 kyr, (b) 1 Myr, (c) 10 Myr, (d) 100 Myr. Dashed lines 
denote model forcing used to generate “synthetic” data points shown in white in top panels. Inverse model recoveries of the δ238U, fanox and Nsw trajectories are shown as 
the solid blue lines and shading. Red lines show calculated fanox trajectory if steady state is assumed for each data point. The MCMC routine successfully recovers trends at 
timescales ranging from 105-108 yr.

pendix C). For the calculations in Fig. 6, we have taken authors’ 
assessments of diagenetic effects on δ238U records at face value, 
meaning that we accepted their preferred values for δ238Usw as 
inferred from δ238Ucarb data. In Section 4.2 we will critically eval-
uate this assumption.

Previous inferences of fanox vary in their resemblance to those 
recovered in the MCMC routine (e.g., Fig. 6a vs. 6e). This is not 
simply due to differences in modeling approaches used in previous 
studies; in both Fig. 6a (Bartlett et al., 2018) and Fig. 6e (Zhang et 
al., 2018), the authors used a steady state framework to calculate 
fanox . Instead, this reflects (i) the poor ability of the δ238U proxy 
to distinguish between high fanox values at steady state (Fig. 1b), 
and (ii) the inappropriateness of the steady state assumption on 

sub-Myr timescales. The latter is particularly evident in Fig. 6e, 
where the steady state assumption leads to gross overestimation 
of seafloor anoxia. In contrast, datasets across longer timespans 
(a few Myr) that were evaluated using a steady state inference of 
fanox have better agreement between steady state calculations and 
the MCMC inversion (e.g., Fig. 6b).

Dynamic forward model outputs used to fit published datasets 
also varied in their match to the MCMC inversions. Some dynamic 
models match the MCMC inference quite well (Figs. 6d, f), while 
others differ substantially (Fig. 6g). In the latter case (Clarkson et 
al., 2018), the MCMC inversion provided a much better fit (lower 
NLL) to the dataset than the illustrative forward model. The previ-
ous inference of stronger anoxia may therefore have been biased 
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Fig. 6. Comparison of inverse model results and published forward models describing δ238U and f anox trends. Datasets: (a) Ordovician-Silurian boundary (Bartlett et al., 2018), 
(b) Frasnian-Famennian boundary (Song et al., 2017), (c) Hangenberg biotic crisis in latest Devonian (Zhang et al., 2020a), (d) Tournasian stage in the early Mississippian 
(Cheng et al., 2020), (e) Permian-Triassic boundary (Zhang et al., 2018 and references therein), (f) Triassic-Jurassic boundary (Jost et al., 2017), (g) Ocean Anoxic Event 2 at 
the Cenomanian-Turonian boundary in the middle Cretaceous (Clarkson et al., 2018), (h) Paleocene-Eocene Thermal Maximum (Clarkson et al., 2021). Red lines show δ238U 
and fanox trends inferred by the authors of the cited studies (dashed and dotted lines are used to denote additional published model scenarios where applicable).

by the prior knowledge of an anoxic interval in the stratigra-
phy.

We see here that the inverse model can successfully fit pub-
lished datasets, allowing rigorous assessment of trends within and 
between events. Furthermore, the uncertainty on model parame-
ters (i.e., $anox, $other, δ238Uriv, Kanox , Kother) has been accounted 
for in these calculations. This all speaks to the robustness of the 
inversion technique in a range of situations. However, the MCMC 
approach has its own limitations. For instance, datasets with vari-
able data density pose problems for the MCMC routine, with highly 
uncertain trajectories in large temporal gaps (Fig. 6c). The optimal 
solution to this problem is to obtain a uniformly dense dataset 
across a timeseries. In the event of unavoidable temporal het-
erogeneity, binning data into larger time intervals can alleviate 
some of the problem for the MCMC routine, but at the expense 
of smoothing out some of the variability in the record. On a case-
by-case basis, an inverse modeler can decide the most appropriate 
way to handle the data.

4. Remaining limitations of the δ238U proxy

Besides the finer details of tuning the MCMC approach to fit 
a dataset, there remain two foundational ways in which even the 
conservative assumptions of our modeling may still lead to inaccu-
racies in our reconstruction of fanox . We discuss the magnitude of 
these effects below.

4.1. Extrapolation of rate constants

Propagating the uncertainty of parameter values (Appendix A) 
in our MCMC inversions allows us to account for imperfection 
in the modern estimation of (or natural variability in) fractiona-
tion factors, river input fluxes and composition, and rate constants. 
However, in the case of U burial rate constants, the uncertainty de-
rived from modern oceanographic studies may not be representa-
tive of past environments that were quite different from today. As 
discussed in Section 2.1, we use rate constants that were derived 
from areal constraints on U burial in modern anoxic sediments 
(Dunk et al., 2002). Although these values are likely representative 
of U burial in modern anoxic and non-anoxic sediments, they may 
not be representative of ancient oceans that were strongly anoxic. 
This is because anoxic sediments today are found overwhelmingly 
in productive continental margin settings with high organic matter 
and/or sulfide burial rates, whereas oxygen-depleted pelagic set-
tings (which would prevail in a fully-anoxic ocean) are likely to 
have much lower rates of organic carbon and sulfide burial, re-
sulting in less pronounced redox-sensitive trace metal (including 
U) scavenging per surface area – and perhaps even muted isotopic 
fractionation (Cole et al., 2020).

Reinhard et al. (2013) noted this problem when modeling the 
effect of expanding ocean anoxia on chromium and molybdenum 
burial. To avoid extrapolating from continental margin-derived rate 
constants to pelagic settings, they scaled their rate constant for 
anoxic metal burial using an algorithm that coupled predicted or-
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Fig. 7. Effect of lower K anox value. Panel (a) shows the end-Permian dataset of Zhang 
et al. (2018) fitted with the base model (K, blue), a two-fold reduction in Kanox (K/2, 
green), five-fold reduction in Kanox (K/5, gold), and ten-fold reduction in Kanox (K/10, 
red). While all scenarios fit the dataset well (panel a) and imply similar (b) Nsw and 
(c) Fanox trajectories, panel (d) shows that lower Kanox values lead to inferences of 
greater fanox (solid lines denote median output in all panels). The true Kanox value 
is likely within an order of magnitude of that used in the base model, since lower 
values imply an unrealistic extent of marine anoxia in the early Triassic.

ganic carbon export profiles to a modern bathymetric configura-
tion. While each of those steps is subject to uncertainty, it is likely 
that such an approach provides a better first-order approximation 
of redox sensitive trace element burial in anoxic pelagic settings 
than simply using the margin-derived value.

Here we use a simple test to explore the sensitivity of our 
MCMC retrievals to inaccurate rate constants. We decreased the 
Kanox value by factors of 2 to 10 and re-ran the MCMC routine for 
the Permian-Triassic dataset of Zhang et al. (2018). As expected, 
while the inferred value of Fanox (amount of U sequestered in 
anoxic sediments) is similar in all cases, using lower Kanox val-
ues leads to inferences of higher fanox (extent of seafloor anoxia,
Fig. 7). Importantly, the extreme case of a 10-fold reduction in 
Kanox is likely a conservative estimate of the deviation from the 
“true” Kanox value, since that scenario invokes fanox values that 
are unrealistically high (100%) for unrealistically long periods (e.g., 
early Triassic). We therefore conclude that our adopted Kanox value 
is within roughly an order of magnitude of the value for pelagic 
settings.

While this constraint on the legitimacy of the margin-based 
rate constant is helpful, it still leaves us with potentially large un-
certainties in our reconstruction of fanox using δ238U data (Fig. 7). 
Future work with the δ238U proxy would therefore benefit from a 
more detailed treatment of potential variability in rates of U scav-
enging in anoxic settings. In the simplest case, one could modify 
Kanox with a non-dimensional scaling factor to account for differ-
ences in rate constants across burial environments (e.g., Chen et 

al., 2021). For datasets when a more detailed assessment of ocean 
bathymetry and export production is possible, an approach similar 
to that of Reinhard et al. (2013) would be more robust. Account-
ing for this effect will be critical for the δ238U proxy to be truly 
useful in interrogating redox dynamics in strongly anoxic oceans. 
In lieu of a clear way around this source of uncertainty at present, 
we encourage the reporting of Fanox along with fanox to facilitate 
inter-comparison of trends across datasets.

4.2. Identifying and accounting for diagenetic offsets

Beyond uncertainties in input parameters and differences in 
rates of U scavenging across marginal and pelagic sites, the largest 
remaining hurdle to the accurate inference of both Fanox and fanox
using δ238U data is the isotopic offset between ancient carbonates 
and coeval seawater that can arise during diagenetic U addition 
and/or removal. As noted in Section 1, studies of recent carbon-
ate sediments have documented sizable offsets between δ238Ucarb
and δ238Usw in Bahamian drill cores (typically 0 to +0.6!; Ro-
maniello et al., 2013; Chen et al., 2018a; Tissot et al., 2018). The 
generally elevated U content of these sediments relative to primary 
biological carbonate precipitates suggests that this isotopic effect 
derives from U addition during diagenesis (Tissot et al., 2018). Un-
fortunately, no other geochemical proxies closely correlate with 
observed deviations from δ238Usw (Tissot et al., 2018), making the 
prospects for precisely correcting diagenetic offsets rather poor. 
When faced with obvious signs of diagenetic enrichment, many 
studies have therefore taken the simple approach of applying a 
constant diagenetic offset to their entire dataset (e.g., Song et al., 
2017; Zhang et al., 2018, 2020a). Given that the observed offsets 
in Bahamian drill core archives < 1.5 Myr old vary considerably 
(+0.23 ± 0.15!, 1σ ; Tissot et al., 2018), this is an insufficient 
remedy to addressing diagenesis in ancient δ238U datasets.

Here we explore the effect of diagenesis on δ238U records in 
two ways. First, we consider the identification of diagenesis in 
δ238U datasets. While an extensive literature surrounds the petro-
graphic and geochemical study of carbonate diagenesis (e.g., Fantle 
et al., 2020) – and petrographic screening as part of U isotope 
work is recommended (e.g., Hood et al., 2016) – here we simply 
consider the expression of diagenesis on bulk-rock δ238U data. As 
diagenesis tends to enrich carbonate sediments in 238U (by adding 
either detrital U with a continental δ238U signature, or authigenic 
U that is enriched in 238U during reductive precipitation), we can 
ask whether certain positive excursions in δ238U datasets are dia-
genetic artifacts or primary redox signals.

We can begin with a simple screening criterion: carbonates 
with δ238U values much greater than δ238Uriv (− 0.30 ± 0.04!) 
have likely been isotopically perturbed during diagenesis. We know 
this because the “global redox” framework for U isotope mass bal-
ance only includes a pathway for depleting seawater of 238U (re-
ductive immobilization); if seafloor anoxia were entirely absent, 
the framework of Fig. 1 would predict δ238Usw = δ238Uriv. Estimat-
ing δ238Uriv in deep time is difficult, and it is possible that differ-
ent continental configurations or exposures of different lithologies 
could alter δ238Uriv (e.g., Jost et al., 2017). There are also smaller U 
sinks (e.g. Fe-Mn oxide adsorption) that preferentially remove 235U 
and could in theory generate a positive δ238Usw excursion, though 
it is perhaps unlikely that these sinks could generate a globally 
significant isotope effect. So while uncertain, δ238U ≫ − 0.3! in 
ancient carbonates can provide a qualitative, yet strong, hint that 
diagenesis ought to be investigated further.

A more nuanced way to identify diagenesis in δ238U datasets 
is to consider the possible timescale of a global-redox-driven posi-
tive δ238U excursion. Positive δ238Usw excursions occur when Fanox
(and thus fanox) decreases and the ocean re-fills with U of conti-
nental (riverine) composition (∼-0.3!). Because the riverine in-

9



M.A. Kipp and F.L.H. Tissot Earth and Planetary Science Letters 577 (2022) 117240

Fig. 8. Forward model runs showing fastest possible positive δ238U recoveries. Grey 
band denotes immediate return to modern anoxia after 0.1 Myr of expanding anoxic 
seafloor coverage; dashed line denotes modern δ238Usw value.

flux of U is small relative to the size of the modern U reser-
voir (Appendix A), these positive δ238Usw excursions occur quite 
slowly. The fastest possible positive redox-driven δ238Usw excur-
sions would occur in the extreme scenario where widespread 
anoxia is followed by an immediate return to the modern anoxia 
value. As shown in Fig. 8, when the marine U reservoir is large 
(i.e., Nsw ≈ 100% of modern), it takes hundreds of kyr for δ238Usw
to increase by ∼0.1!. In contrast, when the marine U reservoir is 
depleted (Nsw < 10% of modern), δ238Usw can increase by > 1! in 
∼50 kyr.

Based on these observations, it appears that nearly every 
dataset in Fig. 6 shows indications of diagenesis, either in the form 
of δ238U > − 0.3!, or by containing apparent positive δ238U ex-
cursions too rapid to be redox-driven. This points to the ubiquity 
of diagenesis in shaping ancient carbonate archives. Some studies 
(e.g., Clarkson et al., 2018; Cao et al., 2020) have constrained plau-
sible diagenetic offsets by studying coeval pelagic and platform 
carbonates (where pelagic settings tend to have smaller/negligible 
diagenetic effects, as observed in Tissot et al., 2018; Clarkson et 
al., 2020). Ancient pelagic carbonates do indeed appear to more 
directly record the δ238Usw value without requiring diagenetic cor-
rection (Fig. 6g, h, Clarkson et al., 2018, 2021). However, diagenetic 
“noise” is still apparent in some pelagic data (Fig. 6g). For all of 
these reasons, it is imperative that diagenetic offsets be considered 
when attempting to quantify seafloor anoxia using ancient carbon-
ate δ238U values, particularly if comparing pelagic and platform 
datasets.

Our second aim is to quantify the possible effect of inaccu-
rate diagenetic corrections on fanox reconstructions. We consider 
a single dataset (platform carbonates from the Permian-Triassic 
boundary; Zhang et al., 2018 and references therein) through three 
diagenetic correction schemes, assuming (i) zero diagenetic offset 
(Fig. 9a), (ii) a uniform diagenetic offset of +0.3! (Fig. 9b; as 
in Zhang et al., 2018), and (iii) a random diagenetic offset drawn 
from the distribution observed in Bahamian carbonate sediments 
(Fig. 9c; +0.23 ± 0.15, 1σ ; Tissot et al., 2018). In doing so, we see 
that these different correction schemes create different histories of 
fanox , in some cases missing entire anoxic intervals. We also see 

that the assumption of zero diagenesis makes it impossible for the 
model to simulate δ238U values ≫ − 0.3! (Fig. 9a).

Although our inverse modeling approach can provide strong 
quantitative constrains on oceanic anoxia using the δ238U proxy, 
the above sensitivity tests show that the assessment of diagenetic 
alteration of primary isotopic signatures is the largest remaining 
hurdle to the accurate utilization of this proxy. The most conser-
vative approach to these corrections is to randomly sample from 
the range of diagenetic offsets observed in modern platform car-
bonate sediments (Fig. 9c); pelagic datasets may be best left un-
corrected (as in Clarkson et al., 2018, 2021), though it is important 
to acknowledge the possible role of diagenesis is obscuring subtle 
trends. Screening individual samples for diagenesis using geochem-
ical and/or petrographic indicators can also improve the precision 
of fanox reconstructions by filtering out clearly altered samples. In 
this way, it is data quality rather than quantity that will dictate the 
precision and accuracy of fanox reconstructions using δ238U data 
moving forward.

5. Concluding remarks

When quantifying the extent of seafloor anoxia using sedimen-
tary δ238U data, we found that a Bayesian inverse approach enables 
both the rigorous interpretation of various datasets and robust 
comparison of trends between datasets. The largest remaining hur-
dles to accurately inferring seafloor anoxia with sedimentary δ238U 
data are (i) accurate assessments of rate constants for anoxic U 
burial in marginal versus pelagic settings, and (ii) accurate correc-
tions for diagenetic alteration of primary isotopic signatures. We 
follow others in the community in stressing that screening sample 
sets for preservation of primary signatures is a critical prerequisite 
to obtain accurate inferences about marine anoxia. If approached 
with awareness of the potential pitfalls outlined above, we find 
that a combination of judicious forward modeling and well-tuned 
inverse modeling can provide a powerful framework for quantita-
tive assessment of anoxic seafloor extent within and among critical 
intervals in Earth’s history.

To demonstrate this promise, we compiled the posterior prob-
ability densities of Fanox and fanox at the height of the four most 
recent anoxic events studied here (Fig. 10). Doing so shows that 
when accurately fitting trends in the data and propagating uncer-
tainty in the isotope mass balance, one can indeed resolve mean-
ingful differences in marine redox conditions across critical events 
in Earth history. For the four events considered here, we con-
strain the peak anoxic seafloor extent ( f anox) to 0.15+0.40

− 0.14% at the 
PETM, 0.6+1.1

− 0.5% during OAE-2, 3.7+5.1
− 1.8% across the Triassic-Jurassic 

boundary, and 10.0+14.0
− 5.6 % across the Permian-Triassic boundary (all 

reported as median and 5th to 95th percentile). This represents rel-
ative extents of anoxia ranging from ∼1x the modern value to 
∼3x, ∼20x and ∼50x, reflecting the ability of the δ238U proxy 
to track global redox perturbations across this range of intensi-
ties. Two of these estimates (OAE-2, PTB) were also substantially 
revised compared to prior inferences (Fig. 6e, g); this re-analysis 
thus enables a consistent comparison of anoxic intensity across 
these different events. With this modeling framework in hand, we 
are therefore poised to gain a deeper quantitative understanding of 
these and other anoxic events, as well as their co-evolution with 
life and climate.
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Fig. 9. Effect of diagenesis on f anox reconstructions. Three methods of accounting for diagenetic effects were applied to the same dataset (Zhang et al., 2018): (a) no 
correction, (b) uniform correction of 0.3!, (c) random correction drawn from distribution of observed offsets in Bahamas drill core data (0.23 ± 0.15, 1σ ; Tissot et al., 
2018). The different methods of accounting for diagenetic effects on carbonate δ238U values have moderate to severe effects on the inferred fanox trajectory.

Fig. 10. Comparison of f anox and F anox at the peak of different anoxic events. Distri-
butions represent 1000 forward model runs sampling the posterior parameter distri-
butions; each distribution samples a time slice at the peak of the respective event. 
Events and their ages: Permian-Triassic boundary (PTB, 252 Ma); Triassic-Jurassic 
boundary (TJB, 201 Ma); Ocean Anoxic Event 2 (OAE-2, 94 Ma); Paleocene-Eocene 
Thermal Maximum (PETM, 56 Ma). The PTB results include propagation of uncer-
tainty on the diagenetic correction, as in Fig. 9c; for other datasets no diagenetic 
correction was applied (following the originally published results).
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Appendix A

Below are the published and herein derived parameter values 
for the modern U isotope mass balance, along with their associ-
ated 2σ uncertainty intervals and references, if applicable. In our 
dynamic model runs, Jriv, δ238Uriv, $anox , $other , Kanox and Kother
are held constant, while Nsw , δ238Usw, Fanox and fanox are calcu-
lated iteratively (with an assumption that at t = 0, the system is at 
steady state). As noted in Section 2.3.2, propagation of uncertainty 
on the constant terms can be achieved by iteratively sampling from 
a Gaussian distribution with the mean and 2σ as shown below, 
where each walker in the MCMC routine will pick a different set 
of values and maintain those values for the entire random walk.

Nsw : 19, 000 ± 1, 200 Gmol U (Dunk et al., 2002)
J riv: 0.042 ± 0.015 Gmol U yr− 1 (Dunk et al., 2002)
δ238Uriv: − 0.30 ± 0.04! (Tissot and Dauphas, 2015; Andersen 

et al., 2016)
δ238Usw (modern): − 0.39 ± 0.02! (Tissot and Dauphas, 2015; 

Andersen et al., 2016; Rolison et al., 2017; Chen et al., 2018b)
$anox: +0.6 ± 0.2! (Andersen et al., 2014; Holmden et al., 

2015; Rolison et al., 2017)
$other: 0.0 ± 0.05! (Lau et al., 2016; Zhang et al., 2020b)
Fanox (modern): 15+8

− 7% (Derived in Section 2.1)
fanox (modern): 0.19+0.11

− 0.05% (Derived in Section 2.1)
Kanox: 1.74+0.68

− 0.63 × 10− 4 yr− 1 (Derived in Section 2.1)
Kother: 1.88+0.22

− 0.17 × 10− 6 yr− 1 (Derived in Section 2.1)

Appendix B

In order to determine the time required for a system to reach 
a new steady state following a stepwise perturbation, we follow 
the approach of Holland (1978, p. 6-7). Let us consider a system 
with a rate of input (Fin) that remains at a constant value (a0) for 
a time period long enough to reach a new steady state (t1). The 
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input rate then suddenly changes to a new, constant level of input 
(a1). The input flux of said element can then be described using 
the equations

Fin =
{

a0, 0 < t ≤ t1

a1, t1 ≤ t
(B.1)

If the output rate is proportional to the inventory of the ele-
ment (N), then the change in inventory can be described as

dN
dt

=
{

a0 − kN, 0 < t ≤ t1

a1 − kN, t1 ≤ t
(B.2)

where k is a rate constant describing the relationship between re-
moval rate and the inventory of the element. Since we specified 
that t1 is long enough for steady state to be attained, it follows 
that at time t1,

N(t1) = N1 = a0

k
(B.3)

and after t1,

N(t) = Nfinal − (Nfinal − N1)exp
(
− k(t − t1)

)
(B.4)

where Nfinal is the inventory of the element at the new steady 
state, such that

Nfinal =
a1

k
. (B.5)

The rate at which the system reaches the new steady state is there-
fore governed by k. When the system reaches the new steady state

Nfinal

a1
= 1

k
= τ (B.6)

where τ is the residence time of the element in the reservoir. We 
can simplify Equation (B.4) by introducing new terms for the time 
elapsed in the approach toward the new steady state ($t , where 
$t = t − t1), the magnitude of the change in inventory achieved 
when the new steady state is reached ($Nfinal , where $Nfinal =
Nfinal - N1), and the amount of change in inventory toward the 
new steady state value that remains at time t ($N , where $N =
Nfinal − N). Substituting these terms into Equation (B.4), and using 
Equation (B.6) to substitute τ for k, we obtain

$N
$Nfinal

= 1 − exp
(

− $t
τ

)
(B.7)

which casts the fraction of the response toward the new steady 
state ($N/$Nfinal) as a function of the number of residence times 
elapsed ($t/τ ). This equation was used to generate Fig. 1c in the 
main text.

Appendix C. Supplementary material

Supplementary material related to this article can be found on-
line at https://doi .org /10 .1016 /j .epsl .2021.117240.
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Assessing	convergence	of	the	MCMC	routine		

1)	 In	order	to	assess	the	ability	of	an	MCMC	routine	to	optimize	free	parameters,	one	
must	first	decide	on	the	number	of	free	parameters	to	include.	Here	it	can	be	useful	to	consider	
model	 collinearity	 and	 parameter	 identifiability.	 Models	 with	 high	 collinearity	 have	 many	
covariant	 parameters.	 This	 poses	 an	 issue	 for	 the	 MCMC	 routine,	 since	 changes	 in	 certain	
parameters	can	be	largely	compensated	by	changes	in	others;	the	net	effect	is	that	these	cases	
make	convergence	on	the	“best	fit”	solution	very	inefficient	(i.e.,	poor	identifiability	of	optimal	
parameter	values).		

We	used	the	collin	function	in	the	FME	package	in	R	(Soetaert	and	Petzoldt,	2010)	to	
assess	collinearity	in	our	model.	This	follows	the	approach	of	Brun	et	al.	(2001,	their	Eq.	13),	who	
defined	 a	 collinearity	 index	 (gK)	 that	 describes	 the	 ability	 of	 other	 model	 parameters	 to	
compensate	changes	in	a	single	parameter	value.	For	instance,	gK	=	10	indicates	that	if	a	single	
parameter	 value	 is	 altered,	 the	 model	 output	 can	 be	 matched	 to	 within	 1/10	 =	 10%	 by	
compensating	changes	in	other	parameters.	While	no	gK	value	specifically	precludes	convergence,	
higher	 values	 imply	more	 difficult	 convergence	 (the	 threshold	 for	 parameter	 identifiability	 is	
often	found	to	be	in	the	range	of	gK	=	5-20).	As	expected,	we	find	that	with	increasing	m	values	
(Eq.	8,	main	text),	the	collinearity	of	our	model	increases	(Fig.	S1).	It	is	therefore	recommended	
to	start	with	low	m	values	(fewer	free	parameters)	for	a	given	dataset,	assess	convergence,	and	
iteratively	increase	m	as	possible	and	as	is	warranted	by	the	data.		

	
Figure	S1.	Model	collinearity	as	function	of	m	value.	Higher	m	values	result	in	higher	collinearity	and	poorer	identifiability.	



2)	Having	used	the	collinearity	assessment	above	to	develop	an	approach	to	selecting	the	
number	of	free	parameters,	the	second	step	in	building	the	MCMC	routine	is	to	determine	the	
number	of	steps	(niter)	a	walker	needs	to	take	to	converge	on	the	optimal	parameter	values.	There	
is	a	vast	literature	on	this	topic	(reviewed	in	Cowles	and	Carlin,	1996)	that	includes	several	indices	
for	assessing	whether	a	walker	(also	called	a	“chain”)	has	converged	upon	the	stationary	(target)	
distribution.	Here	we	consider	perhaps	the	most	widely-used	convergence	metric:	the	potential	
scale	reduction	factor	(Gelman	and	Rubin,	1992).	

Gelman	and	Rubin	(1992,	their	Eq.	20)	defined	a	potential	scale	reduction	factor	(psrf,	
also	called	the	Gelman-Rubin	statistic	or	Rhat)	that	can	determine	whether	a	walker	(or	“chain”)	
has	converged	by	comparing	the	variance	within	a	walker	to	that	between	walkers.	This	approach	
therefore	requires	that	at	least	two	walkers	be	deployed	in	parallel.	If	the	walkers	have	converged	
on	the	stationary	distribution,	they	will	have	nearly	identical	variance,	such	that	psrf	is	near	unity.	
As	in	all	cases,	no	single	psrf	value	guarantees	convergence,	but	the	authors	of	this	diagnostic	
typically	view	psrf	values	<	1.2	as	suggesting	convergence	(Kass	et	al.,	1998).	We	monitored	psrf	
during	all	MCMC	runs.	We	found	that	when	psrf	was	too	high	(>>1.2),	increasing	niter	was	typically	
necessary,	along	with	tuning	of	the	size	of	proposed	“jumps”	in	parameter	values	(pstep)	and	the	
frequency	of	updates	(pupdate)	in	proposed	jumps	using	the	covariance	matrix	(after	Haario	et	al.,	
1999;	2001).	Another	statistic	worth	tracking	when	trying	to	get	the	walkers	to	converge	is	the	
acceptance	 fraction,	 i.e.,	 the	 fraction	of	proposed	 steps	 that	 are	 accepted	as	new	parameter	
values.	It	has	been	demonstrated	that	accepting	~20%	of	runs	is	most	efficient	in	a	wide	range	of	
MCMC	applications	(e.g.,	Geyer	and	Thompson,	1995;	Gelman	et	al.,	1996).	We	therefore	viewed	
acceptance	of	<10%	or	>50%	of	runs	as	suggestive	of	slow	convergence,	and	accordingly	updated	
pstep	and/or	pupdate	to	bring	the	value	closer	to	~20%	as	possible	and/or	necessary.	In	most	cases,	
a	psrf	value	close	 to	unity	co-occurred	with	an	optimized	acceptance	 fraction.	Ultimately,	we	
found	that	psrf	<	1.1	could	typically	be	achieved	with	niter	=	105-106	when	m	£	10.		

3)	 Having	 determined	 that	 the	 walkers	 went	 long	 enough	 to	 converge	 on	 the	 target	
distribution,	the	third	step	in	developing	the	MCMC	routine	is	the	decide	how	many	steps	to	keep	
from	each	walker.	This	is	primarily	a	computational	issue;	more	steps	would	give	a	larger	sample	
size	 and	 thus	 more	 precise	 MCMC	 estimate,	 though	 with	 the	 cost	 of	 extra	 computational	
resources	 (i.e.,	 time	 to	 execute	 a	 longer	 walk,	 and	memory	 to	manipulate	 large	matrices	 of	
posterior	 samples).	 A	 relevant	 metric	 for	 deciding	 the	 number	 of	 samples	 to	 keep	 is	 the	
integrated	 autocorrelation	 time	 (IAT).	 The	 IAT	 is	 a	measure	 of	 the	 inefficiency	 of	 the	MCMC	
method,	describing	 the	number	of	MCMC	samples	 (or	 steps	 in	 the	 random	walk)	 required	 to	
generate	one	 independent	 sample.	 The	MCMC	method	 is	 not	 perfectly	 efficient	 because	 the	
samples	are	in	fact	not	independent.	The	MCMC-derived	error	on	our	estimates	therefore	scales	
as	the	inverse	of	the	IAT,	where	IAT	=	1	would	mean	that	there	is	no	MCMC-derived	error	(e.g.,	
Sherlock	 et	 al.	 2010;	 their	 Eq.	 6).	 In	 practice,	 it	 is	 prudent	 to	 let	 each	 walker	 go	 for	 >10	
autocorrelation	times	(e.g.,	p.	380	in	MacKay,	2003).	This	gives	a	relative	error	of	a	few	percent	
in	the	estimates	derived	from	the	MCMC	approach	–	often	smaller	than	the	uncertainty	ranges	
constrained	in	the	MCMC	analysis	–	meaning	that	we	aren’t	inhibited	from	drawing	meaningful	
quantitative	 conclusions	 from	 our	 MCMC	 outputs.	 Multiple	 authors	 describe	 methods	 for	
estimating	the	IAT	(e.g.,	Sherlock	et	al.,	2010;	Soetaert	and	Petzoldt,	2010;	Foreman-Mackey	et	
al.,	2013).	Here	we	use	the	IAT	function	from	the	LaplacesDemon	package	in	R.	We	monitored	
IAT	 for	 all	MCMC	 runs,	 finding	 that	 for	most	 datasets,	 IAT	was	£100	 steps.	 This	means	 that		



keeping	1000	steps	would	sufficiently	minimize	MCMC-derived	error	(i.e.,	yielding	~10	or	more	
effectively	 independent	 samples).	 The	 walkers	 can	 go	 for	 longer	 and	 more	 samples	 can	 be	
retained,	but	as	we	ultimately	want	to	conduct	many	parallel	walks	to	propagate	uncertainty	in	
the	isotopic	mass	balance	terms	(see	below),	we	want	our	runs	to	be	as	concise	as	possible.	So	
we	typically	retained	the	final	1000	steps	from	each	walker	once	it	was	demonstrated	that	the	
walkers	had	converged	on	the	stationary	distribution.	In	practice,	we	did	this	by	setting	nburn-in	to	
1000	less	than	niter.	This	also	allows	the	adaptive	MCMC	routine	of	the	FME	package	to	update	
the	proposed	steps	using	the	covariance	matrix	up	until	the	point	that	we	retain	runs;	after	the	
burn-in	period,	the	proposals	are	not	adjusted,	meaning	that	the	convergence	metrics	described	
above	 can	 be	 applied	 (whereas	 they	 cannot	 be	 applied	 while	 the	 proposals	 are	 subject	 to	
change).		

4)	Finally,	we	can	consider	the	number	of	walkers	(nwalkers)	to	deploy	in	parallel.	If	all	we	
care	about	 is	obtaining	a	 large	number	of	 samples	 from	the	stationary	distribution,	 the	most	
computationally	 efficient	 method	 would	 be	 to	 let	 a	 single	 walker	 converge	 on	 the	 target	
distribution	and	 then	 retain	as	many	samples	as	wanted	 in	order	 to	minimize	MCMC-derived	
error	(p.	381;	MacKay,	2003).	This	means	that	only	once	does	a	walker	need	to	take	the	time	to	
converge	 on	 the	 target	 distribution.	However,	with	 a	 single	 chain	 it	 is	 not	 possible	 to	 assess	
convergence	using	a	metric	like	the	psrf.	Proponents	of	the	psrf	thus	often	deploy	a	few	walkers	
(3-5)	and	compare	variance	between	walkers	via	psrf	to	demonstrate	convergence	(Kass	et	al.,	
1998).	This	is	only	slightly	less	computationally	efficient	than	the	first	method,	but	has	the	added	
benefit	 of	 a	 more	 rigorous	 convergence	 assessment.	 Additionally,	 if	 computations	 for	 each	
walker	are	conducted	in	parallel,	then	no	extra	time	is	needed.	A	final	end-member	is	to	deploy	
many	parallel	chains,	running	only	long	enough	to	converge	and	then	retain	a	sufficient	number	
of	 samples,	 and	 combining	 all	 the	 samples	 to	 comprise	 the	 final	 posterior	 distribution.	 One	
advantage	of	this	method	is	that	samples	from	different	chains	will	likely	be	less	correlated	than	
those	from	a	single,	long	chain.	In	our	case,	a	further	advantage	is	that	we	can	randomly	sample	
from	slightly	different	values	in	the	constant	terms	of	the	isotopic	mass	balance	in	each	of	the	
parallel	chains.	This	enables	us	to	propagate	the	uncertainty	on	these	terms	into	our	inversions.	
We	therefore	took	the	approach	of	first	tuning	the	MCMC	routine	for	convergence	using	a	few	
chains	and	holding	mass	balance	terms	constant.	Then	having	found	the	conditions	necessary	for	
convergence,	we	deployed	³100	walkers	in	parallel,	each	sampling	from	the	uncertainty	range	
surrounding	 each	 parameter	 in	 Appendix	 A.	 In	 doing	 so,	 many	 chains	 had	 a	 harder	 time	
converging	 and	 required	 a	 higher	 niter	 value.	 In	 the	 end,	 though,	 this	 large	 sample	 set	 was	
compiled	to	comprise	the	total	posterior	distribution.	As	a	final	step,	the	forward	model	was	then	
run	1000	 times	while	 sampling	 from	 this	posterior	distribution	 in	order	 to	generate	 the	 time	
series	estimates	and	confidence	intervals	in	the	figures	in	the	main	text.			

	
	

	
	 	



Age	uncertainty		
	

In	addition	to	propagating	uncertainty	on	the	parameters	in	the	isotopic	mass	balance,	
we	can	account	for	uncertainty	in	sample	ages.	While	the	studies	examined	here	do	not	report	
age	uncertainties,	we	took	a	conservative	approach	by	assuming	a	20%	uncertainty	(1s)	in	the	
age	difference	between	adjacent	samples,	such	that	the	law	of	superposition	is	not	violated.	We	
compared	 the	 MCMC	 inversion	 results	 with	 and	 without	 age	 uncertainty	 for	 the	 Frasnian-
Famennian	dataset	of	Song	et	al.	(2017),	shown	in	Fig.	6b	in	the	main	text,	as	this	dataset	had	the	
largest	time	intervals	between	points	(in	denser	datasets,	the	uncertainty	would	be	negligible).		

We	found	that	accounting	for	this	potential	age	uncertainty	had	a	negligible	effect	on	the	
inferred	history	of	anoxia	(Fig.	S2).	We	therefore	infer	that	our	inversion	results	presented	in	the	
main	text,	which	do	not	account	for	age	uncertainty,	are	likely	robust.	We	note,	however,	that	
future	studies	can	account	for	this	effect	when	reporting	isotopic	data	from	samples	with	poorly-
constrained	relative	ages.		
	

	
Figure	S2.	MCMC	inversion	results	for	Frasnian-Famennian	dataset	of	Song	et	al.	(2017),	conducted	(a)	without	and	(b)	with	
age	 uncertainty.	 The	 inferred	 trajectory	 of	 seafloor	 anoxia	 is	 quite	 similar	 in	 the	 two	 cases,	 suggesting	 that	 this	 potential	
uncertainty	does	not	undermine	the	reconstructions.		

	 	



End-member	cases		
	
Here	we	tested	the	ability	of	the	model	to	successfully	recover	a	step	change	in	seafloor	anoxia.	
We	used	three	simple	cases,	where	fanox	increases	from	the	modern	value	(0.2%)	to	1%,	10%	and	
80%	 instantaneously	at	 the	midpoint	of	a	1	Myr	 time	 interval.	The	resulting	U	 isotope	trends	
(data	points,	Figs.	S3a,c,e)	were	successfully	fitted	by	the	MCMC	routine.	However,	the	recovered	
fanox	trajectory	was	erroneously	high	 in	the	highest	fractional	anoxia	scenario	(Fig.	S2f).	This	 is	
because	there	is	very	little	difference	in	the	steady-state	U	isotope	composition	of	seawater	at	
high	extents	of	 seafloor	 anoxia	 (>>10%;	Fig.	 2a	 in	main	 text).	We	 therefore	 recommend	 that	
interpretations	of	such	datasets	(where	fanox	is	persistently	in	the	range	of	several	10’s	of	percent)	
be	approached	cautiously,	as	minor	changes	 in	U	 isotope	ratios	can	 implicate	vastly	different	
extents	of	anoxia.		
	

	
	
Figure	S3.	Step	change	test.	Data	points	in	panels	(a,c,e)	represent	the	trend	implicated	by	the	anoxia	trajectories	
shown	in	panels	(b,d,f)	as	the	dashed	line.	The	MCMC	routine	was	then	used	to	fit	this	“known”	dataset,	with	the	
resulting	fits	shown	as	the	median	(blue	lines)	and	16th	to	84th	percentile	confidence	intervals	(blue	shading),	here	
conducted	without	propagation	of	uncertainty	for	the	constant	terms	in	the	mass	balance	(Appendix	A),	such	that	
the	effect	of	the	step	change	on	the	inversion	could	be	isolated.	The	poor	sensitivity	of	the	U	isotope	proxy	when	
fanox	is	high	(>>10%)	causes	the	model	to	struggle	to	identify	the	correct	trend	in	the	80%	fanox	scenario	(f)	despite	
fitting	the	data	precisely	(e).		
	
	 	



Numerical	approach	to	model	fit	
	

Last,	we	demonstrate	the	efficacy	of	an	alternative	approach	to	finding	the	most	likely	
fanox	 trend	given	a	d238U	dataset.	As	noted	 in	Section	2.3.1	of	 the	main	 text,	one	could	avoid	
analytically	parameterizing	the	trajectory	of	fanox	by	numerically	prescribing	an	fanox	history	for	a	
dataset.	This	is	a	more	agnostic	approach	to	the	problem	of	finding	the	most	likely	fanox	history,	
so	we	explored	whether	it	would	be	computationally	feasible	to	optimize	the	fit	to	the	data	taking	
this	approach.	To	do	so,	we	ran	100,000	forward	model	simulations	with	the	fanox	history	in	each	
simulation	described	as	a	random	walk	from	a	random	starting	value	(between	0.01%	and	100%)	
and	taking	a	random	step	(±0.25	log	units)	at	each	time	point	(1	kyr).	We	then	calculated	the	NLL	
for	each	model	run	and	retained	only	the	best	0.5%	of	model	runs.	The	median,	along	with	16th	
and	84th	percentile	 ranges,	of	 these	best	model	 runs	displays	a	good	 fit	 to	 the	data	 (Fig.	S4).	
However,	the	fit	 is	not	quite	as	good	as	that	obtained	 in	our	MCMC	routine	(where	temporal	
changes	 in	fanox	were	parameterized	as	a	Fourier	series),	despite	a	 longer	computational	time.	
Tuning	parameters	 in	this	approach	(the	size	of	steps	 in	the	random	walk,	percentage	of	runs	
retained)	did	not	appreciably	 improve	the	outcome.	We	therefore	opted	to	proceed	with	the	
analytical	 description	 of	 fanox	 trajectories	 in	 our	 final	 model	 runs,	 while	 noting	 that	 other	
approaches	are	capable	of	minimizing	NLL.		

	
Figure	S4.	Comparison	of	MCMC-derived	time	series	(blue	shading)	with	time	series	derived	from	numerical	fanox	simulation	
(red	lines).	The	numerical	fanox	parameterization	approach	finds	a	good	fit	to	the	data	and	similar	fanox	trajectory	(median	in	solid	
red	lines,	16th	and	84th	percentile	shown	in	dashed	lines)	to	that	recovered	by	the	MCMC	routine.	However,	the	fit	is	not	quite	as	
good	and	took	longer	to	obtain.	We	therefore	opted	to	describe	the	fanox	history	as	a	Fourier	series	(Eq.	8,	main	text)	and	optimize	
the	values	of	the	coefficients	via	MCMC,	as	this	more	efficiently	found	the	best	fit	to	a	dataset.		 	
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