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A B S T R A C T   

As the parent element in the U-Pb and Pb-Pb radiochronometers, uranium (U) was one of the first heavy elements 
whose isotopic composition was carefully determined. Thought to be constant until the end of the 20th century, 
the ratio of the long-lived isotopes of U (238U/235U) has since been shown to be variable at the permil to sub- 
permil levels in natural materials. Today, the study of U isotopes has found applications in a variety of fields 
including geo/cosmochronology, oceanic paleoredox reconstruction, magmatic differentiation, environmental 
remediation, and forensic studies. With thousands of newly reported U isotopic data each year, a real need exists 
for a comprehensive U isotope database. 

Here, we introduce a global, updatable, U isotope database (UID), which not only contains the most expansive, 
internally consistent U isotopic dataset to date (14,591 entries from more than 320 papers), but also includes all 
other sample data from the original publications, as well as the relevant metadata and sample information to 
facilitate further analysis. The UID is freely accessible and will be updated regularly. All data are normalized to 
the widely-used CRM-145 standard, and all assumptions used to convert the published data are explicitly detailed 
in the paper and the database itself. New data can be easily formatted and submitted for incorporation into the 
database. Using the UID we provide new recommended δ238U values for certified U standards and geostandards 
and discuss important applications and future directions for U isotope studies.   

1. Introduction 

In 1939, Alfred O. Nier reported the first analysis of the isotopic 
composition of uranium (U), the heaviest primordial element, estab
lishing the 238U/235U ratio as 139 (± 1%) (Nier, 1939). Since this pio
neering work, the study of U isotopes has found applications in a wide 
range of scientific fields, including geochemistry, cosmochemistry, nu
clear chemistry, and environmental engineering. Today, more than 320 
papers reporting 238U/235U measurements have been published – most 
of them in the last two decades – and the U isotope field keeps on rapidly 
expanding, with on average over 20 new studies and 1270 new data 
generated each year since 2015 (Fig. 1). 

With such numerous data, a real need for a global U isotope database 
has arisen. In fact, some efforts have been made to collect different 
subsets of U isotopic data, particularly in the context of paleoredox 
reconstruction (Tissot and Dauphas, 2015; Zhang et al., 2018a, 2020c; 
Andersen et al., 2020; Lu et al., 2020; Cao et al., 2020; Chen et al., 
2021a; Wei et al., 2021). While these compilations are useful, they 
usually only focus on specific rock types (organic-rich mudrocks: Lu 
et al., 2020; carbonates, shales, and iron-rich rocks: Chen et al., 2021a), 

geological time periods (Permian-Triassic: Zhang et al., 2018a, 2020c; 
late Neoproterozoic-early Paleozoic: Wei et al., 2021) or event (Shuram 
excursion: Cao et al., 2020). Even when more global compilations are 
undertaken (e.g., Tissot and Dauphas, 2015), they rapidly become 
obsolete as new data gets published, but the compilations are not 
updated. Beyond the U isotope data, these datasets generally include 
only a limited amount of relevant information/data for each sample. As 
a result, when attempting to use these existing compilations, users often 
lack sufficient related information to contextualize the data. 

To address the need for a global U database as well as the short 
comings of available compilations, we introduce the UID: a compre
hensive, updatable, uranium isotope database, in which all 238U/235U 
data published over an 80-year period have been compiled and consis
tently (and transparently) renormalized relative to the CRM-145 stan
dard. At this writing, the UID, which is freely accessible at: https:// 
isotoparium.org/uid, contains already over 14,000 data point. To pre
serve the potential for data analysis, all other available metadata from 
the original publications were also included in the database, such as 
sample type, concentrations (e.g., major and trace elements), other iso
topic data (e.g., δ98/95Mo), or measurement technique. 
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Below, we first briefly review the evolution of U isotope measure
ments over time before describing the structure and content of the 
database, as well as the normalization procedures for U isotopic com
positions. We then use the UID to provide a compilation of recom
mended δ238U values for certified U standards and geostandards (i.e., 
reference materials). Finally, we conduct a brief review of U isotopic 
studies according to their various applications and discuss important 
future directions of research for the field. 

2. A brief history of U isotope measurements 

Initially motivated by the discovery of the naturally occurring 
radioactive decay chains of 238U and 235U (at the time known as UI and 
AcU, respectively), uranium was amongst the first elements to see its 
isotopic composition carefully characterized. Using spark-source mass- 
spectrography, Aston (1931) determined that 235U accounted for at most 
2-3 % of U atoms, and Dempster (1935) moved this limit down to only 1 
%. The first quantitative determination of the isotopic composition of U, 
however, was made by Nier (1939) who, using a unique mass spec
trometer he had just developed (Nier, 1938), reported in U ore samples a 
238U/235U ratio of 139 (1% relative error), and a 238U/234U of 17,000 
(10% relative error). Following this seminal work, early studies of U 
isotopes mainly focused on ore deposits (Lounsbury, 1956; Senftle et al., 
1957; Hamer and Robbins, 1960; Smith, 1961; Rosholt et al., 1963, 

1965; Lancelot et al., 1975; Cowan and Adler, 1976), whose unusually 
high U concentrations enabled high-precision analyses despite the large 
quantity of U required, which led to the discovery of the first, and so far 
only, known natural reactor of Oklo (Gabon) (Baudin et al., 1972; Bodu 
et al., 1972; Neuilly et al., 1972; Lancelot et al., 1975). Although some 
attempts were made to investigate the U isotopic composition of lunar 
samples and meteorites, the precision was generally insufficient to 
resolve any variation (Rosholt and Tatsumoto, 1970, 1971; Tatsumoto 
and Rosholt, 1970; Shimamura and Lugmair, 1981). 

As for other heavy elements, the introduction of digital Thermal 
Ionization Mass Spectrometer (TIMS) instruments was a transformative 
technological advance in U isotopic analysis (e.g., Wasserburg et al., 
1969). The improved precision and sensitivity of digital instruments 
enabled permil level precision to be achieved for nanogram quantities of 
sample U. This development allowed U isotope analysis to grow beyond 
the study of U-rich materials and to be applied in a wider range of fields. 
This was particularly important in cosmochemistry, where earlier claims 
of extremely high 235U excess in meteorites and their inclusions (e.g., 
Arden, 1977; Tatsumoto and Shimamura, 1980) were then systemati
cally reassessed and found to be the results of analytical artefacts rather 
than evidence of a high abundance of live 247Cm in the early solar sys
tem (Chen and Wasserburg, 1980, 1981a, b, c; Chen, 1988). Using the 
same instrument, Chen et al. (1986) later determined in a seminal study 
the U isotope composition of seawater. 

The revolution, however, that precipitated U isotope analysis into 
the age of high-precision (better than ~0.1 ‰, see Tissot and Ibañez- 
Mejia, 2021), was the appearance in the early 2000s of Multi-Collector 
Inductively Coupled Plasma Mass Spectrometer (MC-ICP-MS). The 
ability of MC-ICP-MS instruments to resolve isotopic variations at the 
sub-permil level marks the start of the field of so-called “stable” U iso
topes (238U/235U, expressed as δ238U in δ notation), which is investi
gating non-radiogenic and non-fissiogenic U isotopic fractionation that 
occurred during geo(bio)chemical cycles/processes. Initial studies re
ported resolvable natural U isotopic variations in a range of terrestrial 
environments (Stirling et al., 2007; Weyer et al., 2008). This discovery 
challenged the conventional assumption in the field of geochronology of 
a homogenous and constant 238U/235U ratio (assumed to be equal to 
137.88, Steiger and Jäger, 1977), and thus highlighted the importance 
of measuring 238U/235U ratios when attempting to obtain high-precision 
ages via Pb-Pb dating (Amelin et al., 2010, 2011; Brennecka et al., 
2010b, 2015; Bouvier et al., 2011a, b; Larsen et al., 2011; Brennecka and 
Wadhwa, 2012; Connelly et al., 2012; Iizuka et al., 2014; Goldmann 
et al., 2015; Spivak-Birndorf et al., 2015; Bollard et al., 2017; Tissot 
et al., 2017; Brennecka et al., 2018; Merle et al., 2020). The prevalence 
of U isotopic variations in low-temperature surface environments, and in 
particular the ~1 ‰ heavier U isotope composition of reduced sedi
ments relative to seawater, suggested that U isotopes could be used as a 
paleoredox proxy to reconstruct the extent of oceanic anoxia. Indeed, 
the magnitude and direction of these fractionations matched those ex
pected for Nuclear Field Shift effects during exchange reactions between 
oxidized and reduced U (Bigeleisen, 1996; Schauble, 2007; Abe et al., 
2008) and an extensive body of work in both natural and lab-controlled 
environments soon confirmed that redox reactions could lead to signif
icant U isotopic fractionation in natural materials (Stirling et al., 2007, 
2015; Basu et al., 2014, 2015, 2020; Murphy et al., 2014; Stylo et al., 
2015b; Wang et al., 2015a; Brown et al., 2016, 2018; Jemison et al., 
2018). Today, U is arguably the most widely used paleoredox proxy (see 
review in Zhang et al., 2020b), and methods are being developed to 
ensure the most consistent and robust quantitative assessment of marine 
anoxia using U isotopes (Kipp and Tissot, 2022; Pimentel-Galvan et al., 
2022). Because the magnitude of mass-dependent fractionation de
creases with increasing temperature, U isotope effects have traditionally 
been assumed to be negligible at magmatic temperatures. Yet, modern 
instrumentation enables the resolution of minor δ238U variations in 
igneous rocks, and studies have started to investigate the potential of U 
isotopes as tracers of magmatic processes in bulk rocks (Andersen et al., 

Fig. 1. (a) The number of publications per year reporting 238U/235U data 
through time. The dashed lines represent the number of papers that would be 
published if one paper on U isotopes was published every month (12 papers) 
and every two weeks (26 papers). (b) The number of 238U/235U analyses pub
lished per year. The advent of MC-ICP-MS in the early 2000s made possible to 
resolve small 238U/235U variations and led to the exponential growth of U 
isotopic studies. (Updated Dec. 2022) 
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2015; Avanzinelli et al., 2018; Casalini, 2018; Freymuth et al., 2019; 
Gaschnig et al., 2021; Telus et al., 2012; Tissot et al., 2017), and even 
single-crystals of accessory minerals (Tissot et al., 2019; Yamamoto 
et al., 2021). Besides geochemical applications, U isotopes are also used 
as tracer of U contamination/remediation in environmental engineering 
(Rademacher et al., 2006; Bopp et al., 2010; Shiel et al., 2013, 2016; 
Basu et al., 2014, 2015; Murphy et al., 2014; Stylo et al., 2015a; Wang 
et al., 2015a,b; Brown et al., 2016; Placzek et al., 2016; Dang et al., 
2016; Jemison et al., 2018; Lefebvre et al., 2019, 2021, 2022) and have 
long-standing importance in nuclear chemistry and forensic studies 
(Lancelot et al., 1975; Sus et al., 1979; De Laeter et al., 1980; Holliger 
and Devillers, 1981; Joshi et al., 1983; Hamilton and Stevens, 1985; 
Curtis et al., 1989; Loss et al., 1989; Bros et al., 1996; Hidaka and 
Holliger, 1998; Hidaka et al., 1999; Boulyga et al., 2000; Ejnik et al., 
2000; Fernández-Díaz et al., 2000; Hidaka and Gauthier-Lafaye, 2000; 
Sobotovich and Bondarenko, 2001; Horan et al., 2002; Howe et al., 
2002; Pazukhin and Rudya, 2002; Schramel, 2002; Warneke et al., 2002; 
Yamamoto et al., 2002; Danesi et al., 2003a, b; Fujikawa et al., 2003; 
Christensen et al., 2004; Horie et al., 2004; Tamborini, 2004; Al-Zamel 
et al., 2005; Parrish et al., 2006; Minteer et al., 2007; Kikuchi and 
Hidaka, 2009; Lloyd et al., 2009; Sahoo et al., 2009; Awudu and Darko, 
2011; Marin et al., 2013; Pöml et al., 2013; Tripathi et al., 2013; Meyers 
et al., 2014; Kikawada et al., 2015; Krachler et al., 2018; Stebelkov et al., 
2018; Mishra et al., 2019; Veerasamy et al., 2020). 

3. Guide to the UID database 

3.1. Data source and general considerations 

The UID aims to gather all published 238U/235U data, as well as any 
supporting sample metadata to facilitate data contextualization and 
interpretation. The UID focuses on 238U/235U ratios, so publications only 
containing 234U data are not included. To the best of our knowledge, all 
available data was incorporated in the UID. For the sake of complete
ness, no attempt to screen the resolution or quality of the data was done. 
If the data were transcribed from tables in the main text or supplements, 
the table number is given in the UID. For U isotopic data, the UID in
cludes both the original data from publications and the normalized data 
following the method described in Section 4.2. The supporting metadata 
combines both sample information and geochemical data, which can be 
quite extensive for some samples. 

3.1.1. UID ID 
To avoid confusion caused by inconsistent nomenclatures, each 

sample in the UID is assigned a unique ID along with its original sample 
name in the publication. The UID ID is composed of three sections 
separated by hyphens (e.g., 2021-CRM-T001). The first section is the 
publication year. The second part combines the first initial of the first 
three authors’ surnames (e.g., CRM represents Chen, Romaniello, and 
McCormick). For papers with fewer than three authors, this section 
contains the first initial of all authors. In some rare cases where three 
letters were insufficient to distinguish between articles published in the 
same year by the same research group, the first initial of the fourth 
author’s surname was added to the second section to ensure the 
uniqueness of the UID ID. The last section is separated into two com
ponents to represent each data point. The letter specifies the sub
database category (S = Standard, T = Terrestrial, M = Meteorite, E =
Experimental, F = Forensic, and P = Precision), and the three-digit 
number denotes the sample number within that category. Using the 
nomenclature given above, each sample in the UID has a unique iden
tification, with no duplicates. 

3.1.2. Methodology 
This section gathers information on the standard, spike (if appli

cable), and mass spectrometric technique used, since the methodology 
employed influences the achieved precision and data reduction. 

Detailed information about standards and spikes are described in Sec
tions 3.2.2 and 3.2.9. For mass spectrometry, we included the in
strument’s type (e.g., TIMS, MC-ICP-MS) and model (e.g., NuPlasma, 
ThermoFisher Neptune), and for ICPMS analyses, details on the des
olvating nebulizer (if applicable), and cones combination. The most 
extensively used instruments for high-precision U isotope measurements 
in geochemistry are the Neptune and Neptune Plus (ThermoFisher) and 
the Nu Plasma MC-ICP-MS. The range of applications of other types of 
mass spectrometers are discussed in Section 5.2.1, and the abbreviations 
used in these techniques are listed in Table 1. The sensitivity of mea
surements can be greatly influenced by sample introduction systems. 
The highest precision U isotope determinations use liquid sample 
introduction. Membrane desolvating nebulizer systems can both 
enhance the sensitivity up to tenfold and significantly reduce solvent- 
based interferences. Meanwhile, sensitivity is also affected by the 
cones combination, with the highest sensitivities achieved with a com
bination of a Jet sample cone and an X-skimmer cone. 

3.1.3. Reference 
The source publication details are provided for each sample, using a 

short citation style composed of the author(s) name(s), the year of 
publication, and the abbreviated journal name. A full version of the 
bibliography is included in the Reference tab of the UID (Section 3.2.1). 

3.1.4. Assumptions 
Because not all studies report U isotope data against the same stan

dard, or in the same way (δ238U values vs absolute ratios), a clear and 
transparent normalization algorithm stating what assumptions have 
been made is critical. In the Assumptions columns, we included any 
original assumptions made by the authors in the original publication, as 
well as those we made during data normalization. These pertain to the 
absolute or relative compositions of U reference materials, in house 
standards or important solar system reservoirs. These assumptions are 
numbered and summarized in the Assumptions tab of the UID (see Section 
3.2.8). The normalization algorithms are described in Section 4.2. Users 
can easily renormalize the UID data by simply adjusting the input 
numbers in the Assumptions tab of the UID. 

3.2. Structure of the database 

The UID consists of 10 spreadsheets. The first six, named Standard, 
Terrestrial, Meteorites, Experimental, Forensic, and Precision, are sub
databases containing the U isotopic data. These categories were chosen 
to be as independent and unambiguous as possible, and they are non- 
overlapping, meaning that no data is duplicated between sub- 

Table 1 
Acronyms for terminologies in technique column  

Acronyms Terminology 

MC Multi-Collector 
SC Single Collector 
HR High Resolution 
DF Double Focusing 
Q Quadrupole 
SF Sector Field 
LA Laser Ablation 
FT Fission Track 
SN Solution Nebulization 
DRC Dynamic Reaction Cell 
HEX Hexapole Collision Cell 
ICP Inductively Coupled Plasma 
MS Mass Spectrometer 
SIMS Secondary-Ion Mass Spectrometer 
TIMS Thermal Ionization Mass Spectrometer 
OES Optical Emission Spectrometer 
GRS Gamma Ray Spectrometer 
NAA Neutron Activation Analysis 
SHRIMP Sensitive High Mass-Resolution Ion Microprobe  
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databases (Fig. 2). The remaining four tabs, named References, Assump
tions, Spike, and Constants, provide supplementary information for the 
database. 

All samples were distributed into the various subdatabases, using a 
set of standardized criteria based on the sample type and the scope of the 
study (Fig. 2). This not only minimizes ambiguity, but also allows users 
to rapidly isolate all publications/data within a major theme (e.g., 
chronology, paleoredox, forensic etc.), and build custom-compilations 
for future studies. For each subdatabase, definitions and descriptions 
of selected data components are included in Table A1-5. 

3.2.1. References 
The References table contains the full bibliographic information for 

publications in the database, including the publication’s UID ID, short 
reference, full reference, DOI link, area of study, the number of U data it 
reported, the name and email of the corresponding author, and whether 
the authors of the original publication have reviewed the UID entry. The 
UID ID is composed of the first two parts of the UID ID of each data point 
(e.g., 2021-CRM-). The short reference is given as Author-Year-Journal, 
whereas the full reference includes author(s) name(s), the publication 
year, the publication’s title, the journal/book title, volume number/ 

book chapter, and the article number or pagination where applicable. 
The DOI links for articles are placed in a separate column for rapid 
redirection to the publisher’s page. The main area of study relevant for 
the publication is then listed, allowing users to filter the papers based on 
specific applications. Finally, a summary of the total number of data 
points in each article is given, and their distribution throughout sub
databases, which will assist users in locating data in subdatabases. 

Some studies only display their U isotopic data graphically. These 
publications are listed at the end of the publication table since they do 
not have a data table to transcribe and incorporate into the database. In 
this scenario, only a brief reference, a complete reference, a DOI link, 
and the area of study are provided. We encourage all researchers to 
submit such data to the UID to make it more complete and useful to the 
community. 

3.2.2. Standard 
The Standard table contains three types of samples: (i) isotopically 

certified U standards, (ii) concentration standards, and (iii) other U 
materials such as metal, compound, reagent, and U-bearing glass. 
Standard measurements mainly have three purposes: quality control, 
standard calibration, and method development. In the first scenario, 
secondary standards are measured alongside unknown samples during 
an analytical session, and the data is reported to demonstrate the ac
curacy of the measurements. For standard calibration, on the other 
hand, the most accurate and precise isotopic compositions of standards 
are obtained by performing repeated measurements with well- 
established techniques. We provide recommended δ238U on these 
widely used standards by integrating data from these two purposes 
(Section 5.1). Another use of standard analysis is to evaluate the per
formance of newly developed methods. These data are typically less 
precise because the tested method is designed for specific applications 
that may not demand high precision. For method development studies, 
we incorporated the investigated methodologies and technical in
novations in the Standard table as well. 

3.2.3. Terrestrial 
The Terrestrial table contains U isotope data for virtually all natural 

solid and liquid terrestrial samples, including common geostandard 
materials. The only exception is data from the Oklo reactors, which have 
been included in the Forensic table, along with other data on depleted 
uranium samples. Solid samples include igneous, sedimentary, meta
morphic rocks, and minerals, while liquid samples mainly contain sea
waters, lake waters, river waters, and pore waters. This subdatabase 
includes metadata about the location, age, lithology, concentration, 
concentration ratio, the isotopic composition of other systems, and other 
relevant information. 

3.2.4. Meteorite 
The Meteorite table contains U isotope data for all extraterrestrial 

materials including meteorites, their components, and lunar samples. 
This subdatabase is named meteorite rather than extraterrestrial to 
avoid confusion during UID assignment for sample in this subdatabase 
and the Experimental subdatabase (as both start with the same letter). 

3.2.5. Experimental 
The Experimental table contains all data from lab and field-controlled 

experiments. For lab-controlled experiments, the table provides the 
experimental setup information. The field-controlled metadata also in
cludes the locations of the sites. 

3.2.6. Forensic 
The Forensic table contains the U isotope data of samples affected by 

anthropogenic activities, as well as the data from the natural fission 
reactor of Oklo (Gabon). This table thus gathers all data relevant to 
nuclear contamination, nuclear safeguard, and health physics studies. 

Fig. 2. The UID structure, illustrating the relationships between subdatabases 
and the scope of U isotopic studies. The solid arrows indicate that the majority 
of data from papers in a given field of study are distributed to the linked sub
database, whereas the dash arrows indicate only a minor contribution. 
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3.2.7. Precision 
In MC-ICP-MS studies, it is common practice to report the average 

value and standard deviation of self-bracketed standard measurements. 
By definition, such an exercise should return a δ238U value of 0 (the 
standard is identical to itself, and no deviation should be found), and the 
uncertainty can be used to quantify the external reproducibility of the 
measurements. Indeed, the standard being measured tens of times per 
analytical sessions, the dispersion in its data is more representative 
compared to that of the samples, which are only measured a handful of 
times. We have gathered these data in the Precision table, which can be 
used to assess some aspects of the data quality. 

3.2.8. Assumptions 
The Assumptions spreadsheet contains the assumptions used in the 

original publications reporting the data, as well as those used for 
normalization in the database. We divided the assumptions into two 
categories: assumptions for 238U and assumptions for 234U. For 238U, 
assumptions pertain to historical name changes (e.g., NBS SRM960 was 
recertified and renamed NBL CRM-112a in 1987), 238U/235U absolute 
ratios, δ238U values of standards relative to one another, and alpha ac
tivity ratio (233U/238U). For 234U, assumptions pertain to the half-lives of 
234U and 238U as they determine the 234U/238U ratio at secular equi
librium, 234U/238U of standards (certified values and 234U/238U com
positions applied in the publication). How these assumptions play into 
the data normalization is discussed in Section 4. 

3.2.9. Spikes 
For elements with 4 isotopes or more, the double spike technique 

(Dodson, 1963) is the gold-standard to achieve high-precision isotopic 
measurements, as it allows to correct for mass fractionation arising from 
sample purification and mass spectrometry. While U only has 3 naturally 
occurring isotopes, the introduction of a man-made 233U-236U double 
spike in the early 1980s highly improved the precision of U isotopic 
analysis (Chen and Wasserburg, 1980, 1981b, c). Nowadays, the most 
widely used double spike is the commercially available IRMM-3636 
(233U/236U = 1.01906(16), Verbruggen et al., 2008). Nevertheless, a 
range of in-house double spikes, with variable U isotopic compositions, 
have been and/or still are being used (Tatsumoto and Shimamura, 1980; 
Chen and Wasserburg, 1980, 1981b, c; Shimamura and Lugmair, 1981; 
Bros et al., 1993; Cheng et al., 2000, 2013; Stirling et al., 2005, 2007; 
Rademacher et al., 2006; Parrish et al., 2006; Weyer et al., 2008; Bopp 
et al., 2009, 2010; Amelin et al., 2010; Brennecka et al., 2010b, 2011a, 
b; Richter et al., 2010; Bouvier et al., 2011b; Shiel et al., 2013; Cher
nyshev et al., 2014; Holmden et al., 2015; Wang et al., 2015a, 2016; 
Noordmann et al., 2016; Wei et al., 2018, 2020, 2021). Because the 
composition of a double-spike is an essential factor controlling the 
achievable precision of the measurement (Rudge et al., 2009; Marquez 
and Tissot, 2022), the isotopic composition of the IRMM-3636 and all 
in-house spikes can be found in the Spikes table. A specific abbreviation 
was given to each spike (e.g., 36CW80): the first two digits represent the 
enriched isotopes in this spike (i.e.,233U and 236U in this case); the letters 
in the middle stand for the initials of the authors’ last name using the 
same logic as the UID ID; the last part denotes the year of publication. 
The U isotopic compositions were converted to iU/236U, where i is 
isotope 233, 234, 235, or 238. 

3.2.10. Constants 
The Constants tab provides a summary of all constants used to ho

mogenize concentration data. In the UID, we report elemental concen
trations. This required converting originally published oxide 
concentrations, which was done by calculating an oxide to element 
conversion factor (Table C1 in the Constants spreadsheet) using the 
atomic masses from the 2013 IUPAC technical report (Meija et al., 
2016). For concentration ratios, Table C2 provides the atomic masses to 
convert molar ratios to weight ratios. Table C3 shows the abundance of 
specific isotopes to transform the concentration ratios of the isotopes of 

two different elements to the elemental ratio. Table C4 shows the atomic 
masses of uranium isotopes to convert mass fractions of two U isotopes 
to atomic U isotopic compositions (Section 4.3). 

3.3. Data retrieval 

One of the primary applications of the UID is as a quick-reference 
library for U isotope research. To help users extract data, a quick 
search panel is provided right after the sample name (Column F-M in 
each subdatabase) in which the samples δ238U, 238U/235U, δ234U, and 
(234U/238U) values are gathered, along with their associated un
certainties. Users can search for specific data in the database using either 
the scope of studies or sample types. Drop-down menus are available in 
the subdatabases and reference spreadsheets to implement this func
tionality. This filtering system uses criteria to subdivide the sub
databases, which are defined based on the properties of each 
subdatabase (Table 2). 

4. Data representation 

4.1. Notations for uranium isotopes 

The 238U/235U data are reported both as absolute ratio and in δ-no
tation (permil unit, ‰), which is defined as: 

δ238U =

(238U
/

235Usmp
238U

/235Ustd
− 1

)

× 1000 (1) 

To ensure the internal consistency of the UID, all δ238U data have 
been renormalized relative to the CRM-145 standard (a solution made 
from an aliquot of the CRM-112a metal), and 238U/235U ratios are 
calculated assuming that CRM-145 has the same isotopic compositions 
as CRM-112a with a 238U/235U ratio of 137.837 as reported by the inter- 
laboratory calibration of Richter et al. (2010). 

The 234U/238U data are reported as absolute ratios, (234U/238U) (the 
brackets denote activity ratios) and δ234U, the latter two being defined 
as: 

( 234U
/238U

)
=

234U
/

238Usmp

234U
/

238Usec.eq

(2)  

δ234U =
[( 234U

/238U
)
− 1

]
× 1000 (3) 

In Eq. (2), 234U/238Usec. eq denotes the secular equilibrium 234U/238U 
ratio, which is the ratio of the decay constants of 238U and 234U, and was 
calculated here using the recently determined decay constants from 
Cheng et al. (2013): λ238/ λ234 = (1.55125 × 10− 10)/(2.8220 × 10− 6) =
5.4970 × 10− 5. For both 238U/235U and 234U/238U data, errors were 
adjusted to 2SD, or 2SE when applicable. 

4.2. Normalization of 238U/235U data 

The path to data normalization depends on whether the original 
publication reported δ238U values or absolute 238U/235U ratios. These 
two scenarios are presented in detail below and summarized in a flow
chart in Fig. 3. 

4.2.1. When δ238U is reported in the literature 
For studies reporting δ238U values against standards other than CRM- 

145, a correction was applied to the originally published data to account 
for the offset between the U isotopic composition of the standard used in 
the study and that of the CRM-145. This correction is simply imple
mented as: 

δ238UUID = δ238UCRM145 = δ238Upublished + Δ238USTD− CRM145 (4) 
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where δ238UUID is the δ238U of the sample relative to CRM-145, 
δ238Upublished is the originally reported δ238U relative to the standard 
used in the paper, and Δ238USTD-CRM145 is the δ238U offset between the 
standard and CRM-145. To ensure the self-consistency of the UID data, 
we compiled all published high-precision U isotopic measurements of 
widely (and less-widely) used standards and provide recommended 
Δ238USTD-CRM145 values for these materials (Table 3 and Section 5.1.1). 

In some studies, the authors already corrected the offsets between 
the standard(s) they used and CRM-145, but sometimes using different 
Δ238USTD-CRM145 values (e.g., Bopp et al., 2009, 2010; Dang et al., 2018). 
Since the δ238U of a specific standard relative to CRM-145 is invariant 
(provided the standard is homogenous), and to ensure the self- 

consistency of the UID data, the offset applied in the original publica
tions were undone, and the recommended Δ238USTD-CRM145 (Section 
5.1.1) were applied instead. 

Because all data is corrected using a unique set of recommended 
Δ238USTD-CRM145 values, we did not propagate the uncertainties of these 
offsets onto the final data. The error on δ238U in the UID is thus the same 
as that reported in the literature because any conversion discussed above 
would not influence the measurement uncertainties. 

From the δ238U values and their associated errors, the absolute 
238U/235U ratios in the UID are calculated as: 

238U
/235UUID =

(
δ238U

/
1000+ 1

)
× 238U

/235UCRM− 145 (5) 

Table 2 
Sorting criteria in the UID and subdatabases  

Criteria Lists 

Criterion 1 Criterion 2 Criterion 3 

All Subdatabases 

Scope of study   

magmatic, ore deposit, paleoredox, natural variability   
247Cm, chronology, extraterrestrial variability   

adsorption, chromatography, complexation, coprecipitation, culturing, leaching experiment, redox experiment, well 
injection   

health, natural reactor, nuclear contamination, nuclear safeguard   

method, calibration  

Standard Subdatabase 

Purpose   quality control, method development, calibration 

Sample type 

standard  name of the standard (e.g., CRM-145) 

conc std  Ricca, single elemental standard 

other  compound, metal, reagent, U-bearing glass  

Terrestrial Subdatabase 

Sample type 

solid 

igneous 
basalt, basaltic andesite, core sample, glass, granite, granitoids, lamproites, lava, lherzolite, oceanic crust, scoria, shoshonite, 
tonalite 

sedimentary 
carbonate, carbonate-bio, chimney, clay, evaporite, Fe oxide, Fe-Mn curst, Fe-Mn deposit, hydrothermal vein, iron formation, 
marl, Mn crust, mudrock, mudstone, organic-rich sediments, paleosol, quartzite, reduction spheroid, sandstone, seafloor, 
sediments, shale, siliciclastic sediments, siltstone, soil 

metamorphic gneiss, milonite 

mineral 
apatite, baddeleyite, monazite, pyrite, titanite, uraninite, 
xenotime, zircon 

ore  

reference name of the geostandard (e.g., BCR-2) 

liquid  
groundwater, hydrothermal water, lake water, pore water, river water, seawater 

reference seawater  

Extraterrestrial Subdatabase 

Meteorite 
classification 

chondrite 

carbonaceous CB, CI1, CM2, CR2, CV3 

ordinary H3, H3-6, H4, H5, H6, L/LL4, L/LL5, L/LL6, L3, L3.10, L4, L5, L6, LL3.6, LL6 

enstatite EH3, EH4 

achondrite  Acapulcoite, Angrite, Aubrite, Eucrite, Howardite, iron meteorite, primitive, ungrouped 

lunar 
sample    

Precision Subdatabase 

Sample type   name of the standard (e.g., CRM-145)  
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σ238U/235U =
(
σδ238U

/
1000

)
× 238U

/
235UCRM− 145 (6)  

where 238U/235UCRM-145 is the absolute 238U/235U ratio of CRM-145. In 
the UID, this value is taken as 137.837 (Richter et al., 2010). 

4.2.2. When 238U/235U is reported in the literature 
For studies reporting absolute 238U/235U ratios, the data is first 

converted to δ238U values. If an assumption on the standard 238U/235U is 
provided in the original publication, δ238U and the uncertainty on the 
sample data are calculated as: 

δ238U =

( 238U
/

235Usmp

238U
/

235Ustd asm

− 1

)

× 1000 (7)  

σδ238U =

( σ238U/235Usmp

238U
/

235Ustd asm

)

× 1000 (8)  

where 238U/235Usmp and σ238U/235Usmp 
are, respectively, the absolute ratio 

and associated error of the sample presented in the original publication; 
and 238U/235Ustd_asm is the absolute ratio of the standard assumed in the 
original publication. In some cases, the paper reported the 238U/235U 
without any assumption for the absolute ratio of the standard. If a 
standard with known isotopic composition was measured along with the 
samples, we used this measurement (i.e.,238U/235Ustd_meas) to substitute 
238U/235Ustd_asm in Eq. (7) and (8). In the absence of a stated 238U/235U 
ratio for the standard, we assumed 238U/235Ustd_asm = 137.837 (Richter 
et al., 2010). This assumption naturally holds for papers published after 
2010. For papers before 2010, the quality of data is generally not good 
enough to resolve the difference between our calculation and the 
normalization using 137.88, the consensus ratio from Steiger and Jäger 
(1977). This additional assumption is clearly stated in the “Assumption 
for calculation” column for clarification. For each sample, the δ238U 
value obtained was then renormalized to CRM-145, and used to recal
culate the sample 238U/235U ratio and their uncertainty against the 
238U/235U absolute ratio of CRM-145 using Eq. (5) and (6). 

4.2.3. When both δ238U and 238U/235U are reported in the literature 
In this case, we used the same normalization strategy as presented in 

Section 4.2.1. The rationale is that the δ238U value of a sample relative to 

a specific standard is invariant regardless of the assumed 238U/235U ratio 
of the standard. 

4.2.4. Other circumstances 
In addition to δ238U and 238U/235U, other notations have been used 

in the literature to report U isotopic compositions: namely, activity ra
tios, and epsilon notations. Table 4 lists the frequently used notations 
and their relationship to δ238U values. For these notations, we converted 
them into δ238U or 238U/235U at first, and then used the same approaches 
mentioned in Section 4.2.1 and 4.2.2 to conduct the normalization. 

4.3. Normalization of 234U/238U data 

While δ234U and (234U/238U) are defined relative to secular equi
librium (i.e., a theoretical value), in practice the majority of high- 
precision 234U/238U measurements are done using the sample-standard 
bracketing (SSB) method and calculated relative to a U isotopic stan
dard. If the 234U/238U composition of the standard used in the paper is 
clearly stated, we can correct the offset between this value and the 
certified 234U/238U absolute ratio of the standard to ensure the consis
tency of the UID data. The formulas for this correction are slightly 
different depending on the information provided in the literature. The 
flowchart for the normalization protocol is illustrated in Fig. 4. 

4.3.1. When δ234U is reported in the literature 
If the 234U/238U composition of the standard is stated in the litera

ture, the corrected δ234U of the samples in the database are calculated 
using the following formulas: 

δ234U = δ234Upublished + δ234Ustd cert− δ234Ustd lit (9)  

where δ234Upublished is the originally reported δ234U value; δ234Ustd_lit is δ 
value of the standard used in the literature; δ234Ustd_cert is δ value of the 
standard derived from the standard’s certificate. For CRM-145 
(234U/238U = 0.000052841, New Brunswick Laboratory, 2010), 
(234U/238U)std_cert and δ234Ustd_cert are defined as: 

( 234U
/238U

)

std cert =

234U
/

238Ustd cert

234U
/

238Usec.eq

= 0.9613 (10)  

Fig. 3. Summary flowchart of the protocol for the normalization of 238U/235U data in the UID. *The 238U/235Ustd comes from Richter et al. (2010). For publications 
before 2010, the data quality is generally insufficient to resolve the difference between the assumed value and the normalization using the ‘consensus’ value 
of 137.88. 
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Table 3 
Summary of recommended δ238U and 238U/235U of standards, relative to CRM-145.  

Standard δ238U (‰) 238U/235U n MSWD Comments 

NU standards 
CRM-129 − 1.709 ± 0.009 137.601 ± 0.001 39 0.60 Batch 1  

− 1.48 ± 0.16 137.634 ± 0.021 2 n.a. Batch 2 
IRMM-3184 − 1.14 ± 0.15 137.680 ± 0.021 2 n.a.  
IRMM-184 − 1.160 ± 0.013 137.677 ± 0.002 15 0.85  
Ricca − 0.220 ± 0.014 137.807 ± 0.002 17 0.79  
Reimep-18a − 0.130 ± 0.005 137.819 ± 0.001 23 9.49a Batch 1  

− 0.26 ± 0.01 137.802 ± 0.002 2 n.a. Batch 2  
0.12 ± 0.07 137.854 ± 0.010 1 n.a. Batch 3 

CRM-112a − 0.001 ± 0.006 137.837 ± 0.001 12 3.04  
CRM-145 0.01 ± 0.04 137.838 ± 0.005 4 n.a.  
SRM-950a 0.046 ± 0.008 137.843 ± 0.001 6 1.77   

EU standards 
U970 − 999.9608 ± 0.0003 0.00540 ± 0.00004 1   
CRM-149 − 999.5856 ± 0.0001 0.05712 ± 0.00001 1   
U900 − 999.30086 ± 0.00004 0.09637 ± 0.00001 8   
U750 − 999.7094 ± 0.0003 0.31573 ± 0.00004 4   
U630 − 995.985 ± 0.001 0.5534 ± 0.0002 4   
IRMM-074-1 − 992.747 ± 0.001 0.9998 ± 0.0003 1   
IRMM-199 − 992.746 ± 0.001 0.9999 ± 0.0002 3   
U500 − 992.74 ± 0.01 1.001 ± 0.002 46   
U200 − 971.28 ± 0.25 3.96 ± 0.03 9   
U100 − 934.7 ± 2.8 9.00 ± 0.38 9   
IRMM-2024 − 863.77 ± 0.04 18.778 ± 0.005 1   
U050 − 862.01 ± 0.94 19.02 ± 0.13 2   
IRMM-187 − 846.70 ± 0.05b 21.130 ± 0.006 3   
U045 − 846.70 ± 0.02 21.130 ± 0.003 9   
IRMM-2029 − 835.31 ± 0.05 22.700 ± 0.007 1   
CRM-125 − 828.49 ± 0.02 23.640 ± 0.002 9   
IRMM-2027 − 826.09 ± 0.05 23.971 ± 0.007 1   
IRMM-2028 − 806.93 ± 0.06 26.613 ± 0.008 1   
Reimep-18b − 794.48 ± 0.58 28.329 ± 0.080 1   
IRMM-2023 − 785.87 ± 0.03 29.515 ± 0.005 1   
U030 − 768.74 ± 0.26 31.876 ± 0.036 19   
IRMM-186 − 764.23 ± 0.07 32.498 ± 0.010 1   
IRMM-2026 − 717.48 ± 0.08 38.942 ± 0.011 1   
Reimep-18d − 699.1 ± 1.0 41.48 ± 0.14 1   
U020 − 651.20 ± 0.62 48.078 ± 0.085 8   
IRMM-2025 − 644.99 ± 0.10 48.934 ± 0.013 1   
IRMM-185 − 638.251 ± 0.002 49.8624 ± 0.0002 4   
U015 − 532.4 ± 8.0 64.5 ± 1.1 3   
U010 − 284.81 ± 0.55 98.579 ± 0.076 21    

DU standards 
SPEX U Lot #14-163U 85.09 ± 0.30 149.566 ± 0.041 1   
SPEX CLU2-2Y 93.25 ± 0.56 150.691 ± 0.071 1   
U005 424.96 ± 0.93 196.41 ± 0.13 7   
IRMM-2021 646.90 ± 0.27 227.004 ± 0.037 1   
Reimep-18c 654.5 ± 2.3 228.05 ± 0.31 1   
Inorganic Ventures MSU-100 ppm 927.86 ± 0.92 265.73 ± 0.13 1   
Alfa ICP/DCP 1084.2 ± 3.6 287.28 ± 0.50 1   
Alfa ICP 1084.2 ± 5.3 287.27 ± 0.73 1   
Alfa AA 1085.6 ± 2.9 287.47 ± 0.40 1   
IRMM-183 1256.8 ± 1.2 311.06 ± 0.17 5   
Merck 170360 1643.2 ± 1.9 364.33 ± 0.27 1   
Aldrich AA 1673.1 ± 7.4 368.5 ± 1.0 1   
Assurance U (5% HNO3) 1861.7 ± 6.3 394.45 ± 0.87 1   
Assurance U (2% HNO3) 1957.0 ± 4.9 407.58 ± 0.68 1   
SRM-610 2039.8 ± 1.3 419.00 ± 0.19 40   
IRMM-2020 2461.8 ± 1.0 477.17 ± 0.14 1   
Inorganic Ventures CGU1-125mL 2449.8 ± 2.5 475.51 ± 0.34 1   
Perkin-Elmer N9303844 2633.1 ± 2.7 500.78 ± 0.29 1   
SPEX XSTC-3213 2694.9 ± 5.6 509.29 ± 0.78 1   
IRMM-2019 3324.9 ± 1.2 596.13 ± 0.17 1   
U0002 39390 ± 952 5567 ± 131 1    

a The MSDW of Reimep-18a represents the potential heterogeneity. 
b The uncertainty on IRMM-187 represents the analytical error because the three measurements have the same δ238U value. 
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δ234Ustd cert =

[(
234U/238U

)

std cert
− 1

]

× 1000 = − 38.7‰ (11) 

From the corrected sample δ234U value, the 234U/238U absolute ratio 
and its associated uncertainty are calculated as: 

234U
/

238U =
(
δ234U

/
1000+ 1

)
× 234U

/
238Usec.eq lit (12)  

σ234U/238U =
(
σδ234U

/
1000

)
× 234U

/
238Usec.eq lit (13) 

where 234U/238Usec.eq._lit is the absolute 234U/238U ratio at secular 
equilibrium used in the original publication to calculate the δ234U value. 
If the original paper did not state the 234U/238U at secular equilibrium 
value used for calculation of δ234U values, we assumed a value of 5.4970 
× 10− 5 (Cheng et al., 2013) for publications after 2013, 5.4891 × 10− 5 

(Cheng et al., 2000) for papers published between 2000 and 2013, and 
5.472 × 10− 5 (Chen et al., 1986) for papers published before 2000. Once 

again, we encourage all researchers to submit such missing data to the 
UID so we can address any erroneous assumptions and make the UID 
more complete and useful to the community. 

To calculate δ234UUID and (234U/238U)UID in the database, we use the 
absolute 234U/238U ratio and its associated error obtained above (Eq 9 to 
13): 

( 234U
/238U

)

UID =

234U
/238U

234U
/

238Usec.eq

(14)  

σ(234U/238U) =
σ234U/238U

234U
/

238Usec.eq

(15)  

δ234UUID =
[( 234U

/238U
)
− 1

]
× 1000 (16)  

σδ234U = σ(234U/238U) × 1000 (17) 

Table 4 
How published U isotope data are consistently renormalized into the UID  

Reported Expression Conversion Approach 

235U/238U Absolute atomic ratio 238U/235U =
1

235U/238U 
4.2.2 

(238U/235U) Alpha activity ratio 238U/235U = (238U/235U)/(λ238/λ235) 4.2.2 

ε238U ε238U =

(238U/235Usmp
238U/235Ustd

− 1

)

× 10000 δ238U = ε238U/10 4.2.1 

δ235U δ235U =

(235U/238Usmp
235U/238Ustd

− 1

)

× 1000 δ238U = [1000/(δ235U + 1000)] × 1000 
4.2.1   

ε235U ε235U =

(235U/238Usmp
235U/238Ustd

− 1

)

× 10000 δ238U = [1000/(ε235U/10 + 1000)] × 1000 4.2.1  

Fig. 4. Summary flowchart of the protocol for the normalization of 234U/238U data in the UID. *We apply 5.4970 × 10− 5 (Cheng et al., 2013) for publications after 
2013, 5.4891 × 10− 5 (Cheng et al., 2000) for publications between 2000 and 2013, and 5.472 × 10− 5 (Chen et al., 1986) for publications before 2000. 
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where 234U/238Usec.eq is the absolute 234U/238U ratio at secular equilib
rium. In the UID, this value is taken as 5.4970 × 10− 5 (Cheng et al., 
2013). 

4.3.2. When (234U/238U) is reported in the literature 
The first task is to correct the reported (234U/238U) activity ratio for 

any difference between the standard composition used in the literature 
compared to its certified value: 
( 234U

/238U
)
=
( 234U

/238U
)

published +
( 234U

/238U
)

std cert −
( 234U

/238U
)

std lit

(18) 

Then, we can calculate the absolute ratio as: 

234U
/

238U =
( 234U

/238U
)
× 234U

/
238Usec.eq lit (19)  

σ234U/238U = σ(234U/238U) ×
234U

/
238Usec.eq lit (20) 

The definition and the usage of 234U/238Usec.eq._lit is the same as Sec
tion 4.3.1. The subsequent calculations of δ234UUID and (234U/238U) UID, 
as well as their uncertainties in the database follow Eqs. (14) - (17). 

4.3.3. When 234U/238U is reported in the literature 
Although geochemical studies routinely report 234U/238U data as 

δ234U and (234U/238U), the 234U/238U absolute ratio is a more commonly 
used notation in nuclear chemistry, method development, and forensic 
studies. In the latter situation, Eqs. (14)–(17) are directly applied to 
calculate δ234U and (234U/238U) and their uncertainties. 

4.3.4. When mass fraction is reported in the literature 
In some forensic studies, the U isotopic composition is reported as the 

mass fraction of each U isotope. In this case, we calculate the atomic 
ratio from the U mass fractions and molar masses, following: 
iU

238U
=
(
fmi
/
Mi
)
/
(
fm238

/
M238

)
(21)  

σiU/238U =
iU

238U
×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
σfmi
/
fmi
)2

+
(
σfm238

/
fm238

)2
√

(22)  

where i denotes 234 or 235; fmi is the mass fraction of isotope i; M is the 
atomic mass and σfm is the uncertainty on mass fraction. When mass 
ratios are reported, similarly: 
iU
/238U = mi/238

/
(Mi/M238) (23)  

σiU/238U = σmi/238

/
(Mi/M238) (24)  

where mi/238 denotes the mass ratio of iU over 238U (mi/238= mi/m238). 

5. Discussion 

5.1. δ238U in uranium standards and geostandards 

Measurements of standards and reference materials are key to 
ensuring data accuracy and comparisons of results from different labo
ratories. Herein, we use the term ‘standard’ (or ‘isotope standard’) only 
to denote reference materials with certified U isotopic compositions (e. 
g., CRM-145 and CRM-112a), whereas we use the term ‘reference ma
terials’ for those other materials that are frequently measured alongside 
unknown samples but do not have certified U isotopic compositions. 
‘Reference materials’ thus include artificial concentration standards (e. 
g., ICP single elemental solutions) and natural geostandards. A large 
number of standards and reference materials are regularly used in U 
isotope studies, and we used the UID to provide the most up-to-date and 
reliable recommended δ238U values for these materials (Figs. 5-8). In 

these figures, only high-precision measurements are shown (e.g., with 
uncertainties below 0.10‰ for natural uranium (NU) standards and 
geostandards), and the data is rank ordered, from lower to higher pre
cision. For standards or reference materials with only a single analysis in 
the literature, the recommended δ238U and its error represent the result 
of said analysis. For well characterized NU standards and geostandards 
as well as enriched uranium (EU) and depleted uranium (DU) standards 
(at least 5 analyses), the recommended δ238U and uncertainties are 
calculated as weighted average of independent measurements using the 
following equations: 

δ238Urec =

∑

i

(
δ238Ui

/
σ2
i

)

∑

i
(1/σ2

i )
(25)  

2σδ238U (95%c.i.) = 2 ×

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1

∑

i
1/σi2

√
√
√
√ (26)  

where δ238Urec is the recommended δ238U in the UID; δ238Ui and σi are 
the δ238U value and 1 sigma uncertainty of an independent analysis i, 
and 2σδ238U is the 2 standard error (i.e., 95% confidence interval) of the 
recommended δ238U. To assess the adequacy of using an error-weighted 
average U isotopic composition, reduced-χ2 statistics (a.k.a., MSWD) 
were calculated as: 

χ2
red =

1
n − 1

∑

i

(
δ238Ui − δ238Urec

)2

σ2
i

(27)  

5.1.1. Pure U standards 
Fig. 5 summarizes the δ238U of pure U isotope and concentration 

standards in the order of increasing δ238U values. These materials fall in 
three broad categories: NU, DU, and EU standards. Today, the most 
widely used U isotope standard is the CRM-145, against which all UID 
data is normalized. Produced by the New Brunswick Laboratory (NBL), 
CRM-145 is the solution made from a piece of the CRM-112a U metal. 
The CRM-112a was initially produced and distributed by the National 
Bureau of Standard (NBS) as SRM-960 but was recertified and renamed 
NBL CRM-112a when the Special Nuclear Standard Reference Material 
(SRM) program was transferred to the NBL CRM (Certified Reference 
Material) program in 1987. Early papers also frequently used the SRM- 
950(a), a uranium oxide with indistinguishable 238U/235U from SRM- 
960, but with a distinct 234U/238U ratio (Condon et al., 2010; Richter 
et al., 2010). As a result, the δ238U values of CRM-112a, CRM-145, SRM- 
950a, and SRM-960 are considered identical in the UID (an assumption 
that will be easily relaxed should differences be resolved by future 
measurements). 

In addition to NBL CRM and NBS SRM programs, the Institute for 
Reference Materials and Measurements (IRMM) has produced two series 
of U isotopic standards that are currently used for geochemical mea
surements: IRMM183-187, and REIMEP 18A-D (the latter as part of the 
Regular European Interlaboratory Measurement Evaluation Pro
gramme). Both series contain isotope standards ranging from depleted to 
low enriched uranium (Richter et al., 2005, 2006). 

The homogeneity of these materials is key to their usefulness as 
standards/reference materials. Among NU standards, IRMM-184, CRM- 
112a, CRM-145, SRM-950a, SRM-960, and Ricca (concentration stan
dard) exhibit good agreement during interlaboratory comparisons. As 
already pointed out by Andersen et al. (2017), CRM-129a appears to be 
heterogeneous, with published δ238U values clustering around two 
values: one at ~ -1.5 ‰ (n = 91) (Lau et al., 2016, 2017, 2022; Jost et al., 
2017; Lu et al., 2023) and the other one at ~ -1.7 ‰ (n = 1068). 
Furthermore, while Reimep-18a was until recently considered homo
geneous (Andersen et al., 2017), heterogeneity is likely to exist in this 
standard as well, as δ238U values in different batches range from -0.26 ‰ 
(Brüske et al., 2020a) to +0.12 ‰ (Basu et al., 2014). As a result, these 

H. Li and F.L.H. Tissot                                                                                                                                                                                                                        



Chemical Geology 618 (2023) 121221

11

Fig. 5. Summary of U isotopic compositions of certified U isotopic and concentration standards. δ238U values are renormalized against CRM-145, and absolute ratios 
(238U/235U, lower x-axis) assume a 238U/235U = 137.837 for CRM-145 (Richter et al., 2010). The symbols denote the data collection technique: circle (MC-ICP-MS), 
diamond (TIMS), triangle (ICP-MS), square (in-situ techniques), and black circle (other techniques). The blue band shows the U isotopic composition of modern 
seawater (δ238USW= -0.379 ± 0.023, Tissot and Dauphas, 2015; Kipp et al., 2022) 
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isotopically heterogeneous standards are not ideal for interlaboratory 
comparison. If utilized as secondary standards in future U isotopic in
vestigations, special care must be taken to cross-calibrate the U isotopic 
composition of the specific batch used. 

5.1.2. Geostandards 
At this writing, the U isotopic composition of 73 geostandards has 

been characterized, covering igneous rocks, sedimentary rocks, and U- 
bearing minerals (Figs. 6–8). Except for two granodiorites data points, 
δ238U variations in igneous rocks are generally smaller than in sedi
mentary rocks, reflecting the importance of low-temperature isotope 
fractionations in the latter. Although numerous geostandards have been 
analyzed, only a few of them are well characterized, by multiple labo
ratories, namely: basalts BCR-2 and BHVO-2, Fe-Mn nodule NOD-A-1, 
biogenic carbonates PB-0010, shales SBC-1, SGR-1, and SDO-1, lime
stone SRM-1-d, and uraninites CZ-1. For these, robust recommended 
δ238U values, based on these inter-laboratory data, are provided (Fig. 8). 
Most geostandards have been less studied (measured 5 times, or less), 
and their δ238U, even when highly precise, will benefit from seeing their 
accuracy confirmed by future works, which the UID will allow to easily 
assess as new data becomes available. 

5.2. Scope of uranium isotopic studies and future direction 

To facilitate searching and finding of data, the data within the UID is 
distributed between 6 sub-databases (Fig. 2). These categories were 
chosen to be as independent and unambiguous as possible, and they are 
non-overlapping, meaning that no data is duplicated between sub- 

databases. Within each sub-database, publications (and the data they 
report) are categorized according to their dominant scope/theme of 
study. This allows one to rapidly isolate all publications/data within a 
major theme (e.g., chronology, paleoredox, etc.), and build custom- 
compilations for future studies. Below, we provide a brief review of 
the state-of-the-art for most of the themes used in the UID, in the order 
shown on Fig. 2. 

5.2.1. Calibrations and method developments 
Many methodologies for U isotopic determination have been estab

lished, with remarkable differences in their sensitivity, precision, anal
ysis time, required material mass, and sample preparation processes, 
among others. The analytical toolbox contains various types of modern 
spectrometry to fulfill the requirements of a variety of applications, such 
as inductively-coupled-plasma mass-spectrometry (ICP-MS), TIMS, sec
ondary ion mass spectrometry (SIMS), alpha spectrometry, gamma 
spectrometry, optical emission spectrometry (OES), optogalvanic spec
troscopy (OGS), and neutron activation. As a first-order benchmark to 
evaluate the precision obtained from specific methods, we used the UID 
to plot in Fig. 9 the full range (to-date) of analytical precision on δ238U 
values achieved by each technique. 

ICPMS is the most widely used technique for analyzing U isotopic 
compositions of small amounts of material in geological, environmental, 
and forensic studies, taking advantage of the extraordinarily efficient 
ionization of argon plasma. The instruments used for U isotopic deter
mination are further classified in the ICPMS scheme as MC-ICP-MS, 
quadrupole ICPMS, and sector-field (SF) ICPMS. 

MC-ICP-MS is a well-established technology for high-precision 
238U/235U determination, as the simultaneous detection of all ion 
beams alleviates most of the uncertainty stemming from plasma in
stabilities (relative to single collector instruments). In the geochemistry 
community, solution-based MC-ICP-MS is currently the most routine 
approach for analyzing U isotopes (see Tissot and Ibañez-Mejia, 2021, 
Fig. 2). The performance of this technique can be further improved by 
employing a double spike (Stirling et al., 2007; Richter et al., 2008; 
Weyer et al., 2008), introducing samples with membrane desolvating 
nebulizer systems (e.g., Aridus, DSN-100, and Apex), as well as coupling 
with multiple ion counting devices for ultra-trace level works (Snow and 
Friedrich, 2005). Apart from its extensive usage in the field of 
geochemistry, MC-ICP-MS is also employed in the bulk analysis of 
environmental samples (e.g., samples collected by safeguards inspectors 
in the surrounding environment of nuclear facilities) (Buchholz et al., 
2007; Boulyga et al., 2016). 

Since extensive sample preparation and purification are required 
beforehand, MC-ICP-MS is rarely suitable for environmental screening 
and health physics studies, where there is a high demand for the rapid 
processing of large numbers of samples. In these fields, SF-ICPMS is 
preferred because isotopic analysis can be performed despite significant 
and complex matrices. Health physicists have put efforts in developing 
methods to measure U isotopic ratios in biological samples such as blood 
(Tolmachyov et al., 2004; Todorov et al., 2009) and urine (Pappas et al., 
2003; Gwiazda et al., 2004; Gray et al., 2012; Xiao et al., 2014). Because 
of the low sample preparation requirements, SF-ICPMS is also applied to 
environmental samples, such as soil and U-bearing particles (Boulyga 
et al., 2001; Boulyga and Becker, 2001, 2002; Shinonaga et al., 2008). 

Other types of ICPMS are less commonly used for U isotopic analysis. 
Only a few studies evaluated the ability of quadrupole ICPMS (Oliveira 
and Sarkis, 2002; Ejnik et al., 2005; Lindahl et al., 2021) and high- 
resolution (HR) ICPMS (Krystek and Ritsema, 2002; Zhang et al., 

Fig. 6. Summary of δ238U values of rock geostandards. The symbol shapes denote the sample type: circle (igneous), diamond (sedimentary). The blue band shows the 
U isotopic composition of modern seawater (δ238USW= -0.379 ± 0.023, Tissot and Dauphas, 2015; Kipp et al., 2022). Geostandards with at least 2 measurements are 
colored, and the error bands are shown only for those with more than 5 analyses. When n>1, the uncertainties of the recommended δ238U values are 2 standard 
deviations. When n=1, the uncertainty represents the analytical error of the single measurement. Grey symbols for BHVO-2 and BCR-2 denote analyses not use in the 
calculation of the recommended δ238U values. 

Fig. 7. Summary of δ238U values of ore and mineral geostandards. The blue 
band shows the U isotopic composition of modern seawater (δ238USW= -0.379 
± 0.023, Tissot and Dauphas, 2015; Kipp et al., 2022). Geostandards with at 
least 2 measurements are colored, and the error bands are shown only for those 
with more than 5 analyses. When n>1, the uncertainties of the recommended 
δ238U values are 2 standard deviations. When n=1, the uncertainty represents 
the analytical error of the single measurement. 
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2007) to provide fast U isotope data and test their relevance to the study 
of biological and particle samples. 

In addition to liquid sample introduction, ICPMS can be combined 
with laser ablation (LA) systems, allowing for in-situ isotopic analysis of 
solid materials, which is especially beneficial for small size samples that 
lack adequate materials for solution-based measurement. Besides 
providing spatially resolved data, LA-ICPMS significantly reduces anal
ysis time and does not generate radioactive waste, which are important 
in forensic studies. LA-ICPMS has thus proven a useful tool to charac
terize U isotopic compositions in single particles (Boulyga and Prohaska, 
2008; Varga, 2008; Pointurier et al., 2011; Kappel et al., 2012, 2013; 
Pointurier et al., 2013; Claverie et al., 2016; Donard et al., 2017; Varga 
et al., 2018; Ronzani et al., 2019), highly radioactive materials (Guillong 
et al., 2007; Günther-Leopold et al., 2008; Stefánka et al., 2008) and 
biological samples (e.g., flower leaves) (Zoriy et al., 2005). In most 
natural materials, where U contents are low and isotopic variability is 
typically limited to sub-permil effects, LA-ICPMS provides insufficient 
precision to resolve U isotope variations. As a result, the use of laser 
ablation in geochemistry is still in its infancy, and, to our knowledge, 
only one recent study has successfully used LA-MC-ICP-MS, in combi
nation with 1013 ohm amplifiers, to determine 238U/235U ratios in single 
zircon and titanite grains (Yamamoto et al., 2021). 

SIMS is another type of in-situ technique for U isotopic determination 
(Kips et al., 2007; Lewis et al., 2015; Yomogida et al., 2017). SIMS 

analysis suffers from higher polyatomic interferences (Ranebo et al., 
2009) than LA-ICPMS, but offers a better spatial resolution down to 1 μm 
(Boulyga et al., 2015). The higher spatial resolution allows for mapping 
U isotopic compositions in target samples. These maps can be used for 
preliminary screening in forensic particle analysis to locate and distin
guish different types of particles (Tamborini et al., 1998; Betti et al., 
1999; Ranebo et al., 2007; Peres et al., 2013). For larger samples like 
fuel pellets and big particles, SIMS maps are also valuable to detect 
spatial heterogeneity of U isotope ratios (Tamborini et al., 1998; Kips 
et al., 2019). 

TIMS was the paramount technique for high-precision U isotope 
measurements before the advent of MC-ICP-MS. Although MC-ICP-MS 
plays a dominant role in geological and environmental investigations 
nowadays, TIMS still occupies an important place in studies requiring 
the determination of absolute U isotope ratios, such as geochronology (e. 
g., Hiess et al., 2012), nuclear contamination (Taylor et al., 1998; Sahoo 
et al., 2002, 2004), solution-based single particle analysis (Shinonaga 
et al., 2008; Kraiem et al., 2012), as well as calibration of certified 
reference materials, commercially available compounds and reagents 
(Richter et al., 1999b, 2005, 2006, 2010, 2018; Condon et al., 2010; 
Mathew et al., 2012; Kraiem et al., 2013; Shibahara et al., 2016; Peńkin 
et al., 2018). A range of techniques for improving the performance of 
TIMS were developed, such as employing a cavity source to enhance 
ionization efficiency (Maden et al., 2018; Trinquier et al., 2019), 

Fig. 8. Summary of δ238U values of widely used geostandards (with at least 5 measurements). The error bands represent the 95% confidence intervals of the data 
points. As in Fig. 6 and Fig. 7, symbol shapes denote sample types: circle (igneous), diamond (sedimentary), and triangle (ore/mineral). The grey symbol indicates 
that the data point meets the selection criterion but is not included in the calculation of recommended δ238U, because of the significant offset relative to other 
measurements. Within each geostandard, the data are ordered by measurement uncertainty, reflecting the improvement in analytical precision (mostly as a function 
of time). The blue band shows the U isotopic composition of modern seawater (δ238USW= -0.379 ± 0.023, Tissot and Dauphas, 2015; Kipp et al., 2022). 
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optimizing evaporation protocols (Callis and Abernathey, 1991; Fiedler, 
1995; Richter and Goldberg, 2003; Suzuki et al., 2010; Richter et al., 
2011; Mathew et al., 2013), and leveraging higher resistance amplifiers 
or ion counter to improve electronic efficiency (Quemet et al., 2014, 
2016). 

Other types of spectrometry for U isotope analysis are either 
preferred in early studies or confined within limited applications. Alpha 
spectrometry is a conventional technique to determine the activity ratio 
of U isotopes (Kunzendorf, 1968; Iturbe, 1992; Duarte and Szeles, 1994; 
Boulyga et al., 2001; Alamelu and Jagadish, 2016). Other techniques 
including ICP-OES (Zeiri et al., 2021), extractive electrospray ionization 
mass spectrometry (EESI-MS), passive gamma-ray spectrometry (Nir-El, 
2000), glow discharged OGS (Barshick et al., 1995), and neutron acti
vation analysis (Ganapathy, 1978) will not be described in detail here, 
because they are not commonly employed. 

As predicted from counting statistics and Johnson Noise, the preci
sion of U isotope analysis achievable with modern instrumentation is 
correlated with the total mass of U used for measurements (Fig. 10). For 
a given instrument (i.e., analytical setup), precision can thus be 
improved by analyzing more U. The relationship shown in Fig 10 can be 
used a reference point to design analytical plans based on the available 
materials and desired precision in future studies. 

Besides mass spectrometry, method developments also comprise 
chemical separation and purification. Chromatography based on the 
UTEVA resin is well-established nowadays, modified after Horwitz et al. 
(1992; 1993), with minor differences between labs (e.g., Stirling et al., 
2007; Weyer et al., 2008; Tissot and Dauphas, 2015). Recent studies on 
U chemistry mainly focus on processing special samples, such as high- 
purity graphite (Metzger et al., 2021) and environmental swipe sam
ples (Metzger et al., 2019), as well as measuring minor isotopes without 
spike addition (Rovan and Štrok, 2019). 

5.2.2. Oceanic paleoredox reconstruction 
Reconstructing the oceanic redox history is important to understand 

the evolution of the Earth’s surface conditions, and its interconnection 
with the appearance and evolution of life. In the past decade, U isotopes 
have received considerable attention as a paleoredox proxy of marine/ 
seafloor anoxia (see review by Zhang et al., 2020b). Uranium is redox- 
sensitive and can hold two oxidation states in the terrestrial surface 
environment: insoluble U(IV) and soluble U(VI) (Langmuir, 1978). In 
the modern (oxic) ocean, the long residence time of U (τ ~ 400 kyr, Ku 
et al., 1977; Dunk et al., 2002) results in both homogeneous salinity- 
normalized concentration (~3.2 ng/g for a salinity of 35 g/L, Chen 
et al., 1986) and isotopic composition (δ238U = -0.379 ± 0.023 ‰, Tissot 
and Dauphas, 2015; Kipp et al., 2022). As U inputs to the ocean are 
dominated by continental weathering, with an isotopic composition 
identical to that of the continental crust (-0.30 ± 0.04 ‰, Tissot and 
Dauphas, 2015; Andersen et al., 2016), the δ238U of seawater is thus 
primarily controlled by the isotopic fractionation associated with U 
removal into different oceanic sinks. The main process fractionating U 
isotopes during removal is reductive immobilization in anoxic/euxinic 
settings, which leads to 238U enrichments in reduced sediments. As a 
result, in periods of expanded marine anoxia, the increased sequestra
tion of U in reduced sediments, would result in lower U concentration 
and δ238U value in seawater. 

One key aspect when reconstructing past oceanic redox states with U 
isotopes is to work on a reliable seawater δ238U archive. Carbonates are 
the most popular and straightforward archive to date since they tend to 
directly record the primary seawater δ238U signal. U(VI) mainly exists as 
uranyl carbonate complexes UO2(CO3)3

4- in seawater, which is incorpo
rated into marine carbonates with no significant isotopic fractionation. 
This conclusion is supported by both lab-controlled coprecipitation ex
periments (Chen et al., 2016) and comparison of primary carbonates and 
modern seawater (Stirling et al., 2007; Weyer et al., 2008; Romaniello 
et al., 2013; Tissot et al., 2018; Kipp et al., 2022). In just over a decade, 
more than 60 studies have placed constraints on oceanic anoxia using U 
isotopes in a variety of carbonates, including limestone, dolomite, 
biogenic carbonates, and carbonate-rich sediments (Brennecka et al., 
2011a; Asael et al., 2013; Romaniello et al., 2013; Andersen et al., 2014, 
2018, 2020; Dahl et al., 2014, 2017, 2019; Azmy et al., 2015; Tissot and 
Dauphas, 2015; Lau et al., 2016, 2017, 2022; Noordmann et al., 2016; 
Hood et al., 2016, 2018; Elrick et al., 2017, 2022; Jost et al., 2017; Song 
et al., 2017; White et al., 2018; Zhang et al., 2018a, b, c, 2019a, b, 
2020a, b, c, 2022; Phan et al., 2018; Clarkson et al., 2018, 2020, 2021a, 
b; Bartlett et al., 2018; Wei et al., 2018, 2021; Herrmann et al., 2018; 
Tissot et al., 2018; Gilleaudeau et al., 2019; Gothmann et al., 2019; 
Tostevin et al., 2019; Brüske et al., 2020a; Cheng et al., 2020a, 2020b; Li 
et al., 2020; Lu et al., 2020, 2023; Mänd et al., 2020; Bura-Nakić et al., 
2020; Zhao et al., 2020; Cao et al., 2020; Livermore et al., 2020; del Rey 
et al., 2020, 2022; Bruggmann et al., 2022; Chen et al., 2018a, b, 2021a, 
b, 2022a, b; Cherry et al., 2022; Dang et al., 2022; Liu et al., 2022; 
McDonald et al., 2022; Wang et al., 2022). As recently discussed in Kipp 
and Tissot (2022), perhaps the main uncertainty affecting these re
constructions stems from the way diagenetic transformations alter the 
primary seawater signal. Studies of modern primary carbonates have 
shown that early diagenesis leads to non-negligible δ238U offset between 
carbonates and seawater (from ~0 to +0.6 ‰; Romaniello et al., 2013; 
Tissot et al., 2018). Things become even more complicated when using 
ancient carbonates since the extent of diagenesis varies in different 
geological settings. In the absence, so far, of a proxy for δ238U diagenetic 
offsets, the resulting uncertainty on anoxia reconstructions can have a 
substantial impact on data interpretations (Kipp and Tissot, 2022). 

Shales and organic-rich sediments are another set of widely used 
sedimentary archives for δ238U seawater reconstructions (Weyer et al., 
2008; Montoya-Pino et al., 2010; Asael et al., 2013; Kendall et al., 2013, 
2015, 2020; Holmden et al., 2015; Noordmann et al., 2015; Lu et al., 
2017; 2020; Yang et al., 2017; Phan et al., 2018; Wang et al., 2018, 
2020; Abshire et al., 2020; Brüske et al., 2020a, b; Cheng et al., 2020b; 
Cole et al., 2020; Stockey et al., 2020; Dickson et al., 2021, 2022; Pan 
et al., 2021; Chiu et al., 2022; Dang et al., 2022; Lau et al., 2022; Li et al., 
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2022; Ostrander et al., 2022). In contrast to marine carbonates, which 
directly represent seawater, the shale signatures are highly fractionated 
away from the seawater composition, and the magnitude of the frac
tionation factor relative to seawater has been shown to depend on 
environmental controls such as the depositional environments (Ander
sen et al., 2014), organic carbon and sulfide burial rates (Cole et al., 
2020) or the extent of oceanic anoxia (Chen et al., 2021a). Furthermore, 
shales and organic-rich sediments often consist of both authigenic and 
detrital components, and the two have to be teased apart, either phys
ically/chemically prior to analysis or through corrections leveraging 
authigenic U enrichment proxies such as U/Al and U/Th ratios (Asael 
et al., 2013; Noordmann et al., 2015; Yang et al., 2017; Abshire et al., 
2020; Brüske et al., 2020a, b; Kendall et al., 2020; Cole et al., 2020; 
Stockey et al., 2020). While these added uncertainties certainly 
complicate δ238U seawater reconstructions, the record from shales and 
organic-rich sediments is nonetheless highly valuable, and study of the 
(co)variations with the carbonate record can provide complementary 
insights into the U oceanic cycle through time (e.g., Chen et al., 2021a). 

Fig. 11 presents the U isotopic data for carbonates and shales from 
3500 Ma to the present (panels a and c), with emphasis on the Neo
proterozoic and Phanerozoic (panels b and d). Even though there are 
thousands of data points available for various geological periods, this 
figure shows that almost all current paleo-redox studies are event- 
driven, with a particularly strong focus on catastrophic extinction 
events. Future U isotope studies targeting the current gaps in the record 
(i.e., between geological events studied so far) will be extremely useful 
to develop a comprehensive understanding of the redox history through 
out Earth’s history. 

Two studies have investigated Fe-Mn crusts, where U is mostly 
adsorbed on the surface of the samples, as a potential record of seawater 
δ238U value (Goto et al., 2014; Wang et al., 2016). In line with adsorp
tion experiments (Brennecka et al., 2011b), these studies found Fe-Mn 
crusts, from modern back to 80 Myr ago, to be offset from the modern 
seawater value by ~ 0.24‰, which the authors interpreted as evidence 
of constant oxygen levels in the ocean during this time interval. The fact 
that the 234U/238U ratios in all samples are widely out of secular equi
librium, and, in many cases, offset towards the modern seawater value, 
suggests however constant U exchange and equilibration between the 
Fe-Mn crusts and seawater. This raises serious doubts about the reli
ability of Fe-Mn crusts as faithful recorders of past seawater δ238U value 
and their usefulness in the study of oceanic paleoredox conditions. 

It is essential to understand the terrestrial U cycling in paleoredox 
studies since this proxy is based on the rationale that δ238U of seawater 
predominantly reflects the mass balance between riverine input and 
various sedimentary outputs such as anoxic sediments, euxinic sedi
ments, and biogenic carbonates. While the U isotopic compositions of 
these sinks have been extensively characterized, those of seawater and 
rivers are less well constrained (Fig. 12) (Stirling et al., 2007; Andersen 
et al., 2016; Noordmann et al., 2016). Recently, Kipp et al. (2022) 
partially addressed this issue by reevaluating the fundamental assump
tion of homogeneity of the marine U reservoir. They found that subtle 
δ238U and δ234U heterogeneity that correlate with U concentrations exist 
in modern seawater, and as a result proposed a new-salinity normalized 
global mean seawater for δ238U of -0.379 ± 0.023‰ and δ234U of 145.55 
± 0.28‰.Previous research has shown that substantial variations exist 
between rivers from different regions, ranging from -0.72 to +0.06‰, 

Fig. 11. Compilation of δ238U values in carbonates (a) from 3500 Ma to present (n = 3132), (b) from 800 Ma to present (n = 2704), and in shales (c) from 3500 Ma to 
present (n = 1553), (d) from 800 Ma to present (n = 1063). The brown and blue band show δ238U of continental crust (-0.29 ± 0.03‰) and modern seawater (-0.379 
± 0.023‰) respectively (Tissot and Dauphas, 2015; Kipp et al., 2022). The six geological intervals are pre GOE (3500-2430 Ma), GOE (2430-2060 Ma), 
post-GOE-pre-NOE (2060-800 Ma), ramp up (ru) NOE (800-680 Ma), NOE (680-540 Ma) and post-NOE (540 Ma-present). In panels (b) and (d), darker symbols 
denote numerical ages are reported in the original publications, while symbols greyed out denote ages are estimated by the geological periods. 
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and seasonality may affect the riverine δ238U values (Andersen et al., 
2016). In order to establish a tighter constraint on the U budget, an 
expanded riverine database, both in time and space, is required. Besides 
the uncertainty on the riverine value, Fig. 12 also reveals other limita
tions in the data currently available. For instance, the U isotopic 
composition of groundwater (as an input to the ocean) has not been 
investigated since previous studies only measured groundwater 
contaminated by U mines. Furthermore, the δ238U record of lake water, 
pore water, and hydrothermal water are extremely limited (< 5 sites for 
each category). Future characterization of the U isotopic compositions of 
these reservoirs will provide constraint on the U budget at a finer scale. 

Another important issue in the context of the U budget is that U 
cycling can be dramatically different during expanded marine anoxia. 
Sparing dissolved U(VI) will significantly shorten the U residence time 
(e.g., Li et al., 2013), invalidating the assumption of conservative 
behavior of uranium. This has the potential to shift U isotopic compo
sition from a global to a regional redox indicator (Andersen et al., 2017), 
and can influence U isotopic fractionation (Chen et al., 2021a). 

Finally, detailed studies establishing the reliability of current and 
future potential archives are needed. Carbonates, for example, 
frequently experience varying extents of diagenesis, which can signifi
cantly alter the primary isotopic composition. More efforts are needed to 
disentangle the diagenetic signal from the authigenic U composition. 
Possible directions include developing fine correction protocols for 
different diagenetic processes and identifying alternative archives that 
are less affected by and/or more resistant to these alterations. According 
to recent studies, brachiopod shells can be a promising proxy since they 

are less impacted by porewater diagenesis (Livermore et al., 2020; del 
Rey et al., 2020). Finding more applicable archives can help us expand 
our toolbox when some samples are unavailable. 

5.2.3. Igneous processeses 
High-precision U isotope investigations in igneous systems is a young 

but growing field. The discovery of δ238U variations in felsic rocks (Telus 
et al., 2012), crustal materials (Andersen et al., 2015) and accessory 
minerals (Hiess et al., 2012), triggered interest in using U isotopes to 
shed light on high-temperature processes. Since then, several studies 
have started to explore in more details the potential of U isotopes as 
tracers of magmatic and other related processes such as crystallization, 
metasomatism, Soret diffusion, subduction, and sedimentary recycling 
(Telus et al., 2012; Andersen et al., 2015; Avanzinelli et al., 2018; 
Casalini, 2018; Livermore et al., 2018; Freymuth et al., 2019; Tissot 
et al., 2019; Yamamoto et al., 2021; Gaschnig et al., 2021). 

Using the classical igneous (I-type) and sedimentary (S-type) granites 
from the Lachlan Fold Belt, Telus et al. (2012) found a spread in δ238U 
from -0.50 ‰ to -0.21 ‰, but without any clear relationship to the na
ture of the protolith, or tracers of magmatic differentiation (e.g., SiO2). 
The lack of positive correlation between U, Fe and Mg isotope data in 
these samples showed nonetheless that thermal (Soret) diffusion was not 
the driver of isotope variations for these elements in these rocks. 

After Andersen et al. (2015) found that samples from the Mariana arc 
had lighter U isotope composition than OIBs (by ~0.05 ‰), which were 
themselves lighter than MORBs (also by ~0.05 ‰), studies started 
investigating arc systems in more details. These revealed a general trend 

Fig. 12. (a-b) Compilation of δ238U values in water samples. The symbol shapes denote sample type. The brown and blue band show δ238U of continental crust (-0.29 
± 0.03‰) and modern seawater (-0.379 ± 0.023‰) respectively (Tissot and Dauphas, 2015; Kipp et al., 2022). (c) World map illustrating the water sample locations. 
Symbols as in (a) and (b). 
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between δ238U and Th/U ratios in arc lavas, consistent with the idea 
(Elliott et al., 1997; Avanzinelli et al., 2012) that the composition of the 
arc lavas is the result of mixing between low Th/U (and low δ238U) slab- 
derived fluids and high Th/U (and δ238U) recycled sediments melts into 
the source of the arc magmas (Andersen et al., 2015; Casalini, 2018; 
Freymuth et al., 2019). A distinct trend observed in Mount Vesuvius 
lavas was interpreted to reflect an increase in carbonate sediment 
recycling, and thus increased CO2 fluxes to the mantle source of these 
lavas during the more proactive phases of the volcano (Avanzinelli et al., 
2018). 

In a recent study of a differentiation sequence in the Kilauea Iki lava 
lake, Gaschnig et al. (2021) observed only a limited range of U isotope 
compositions (from -0.38 to -0.20 ‰), and no systematical variations 
with the extent of differentiation, ruling out this process as a major 
driver of isotopic variability in such tholeiitic systems. In contrast, 
correlations of δ238U with REE patterns and mineral modes in angrites 
meteorites suggests that a change in the coordination environment of U 
during incorporation into pyroxene results in cpx-melt U isotope frac
tionation factor of ~-0.25 ‰ (Tissot et al., 2017). 

Some studies have also started exploring the U isotope systematics of 
pooled mineral fractions (Hiess et al., 2012; Livermore et al., 2018) and 
single-crystals (Tissot et al., 2019; Yamamoto et al., 2021). We direct the 
reader to Section 5.2.5 (chronology) and Tissot and Ibañez-Mejia (2021) 

for more details on this topic. 
While clear δ238U variations have now been documented in igneous 

materials, the mechanisms underlying these fractionations at magmatic 
temperatures are still mostly unknown. The property of minerals 
incorporating U, temperature, the redox state of the melt, and the extent 
of crystallization are all potential drivers of isotopic fractionation. More 
work is needed to systematically assess the contribution as well as the 
direction and magnitude of U isotopic fractionation resulting from each 
of these mechanisms. As discussed in more details in Tissot and Ibañez- 
Mejia (2021), inter-crystal, inter-mineral and inter-rock 238U/235U var
iations could become powerful tools for studying magmatic evolution, 
provenance, redox, and/or composition. Exploiting the potential of this 
system will, however, require coordinated efforts to constrain the rela
tionship between the characteristics of the host rock, host mineral, U 
crystal chemistry/bonding environments, and δ238U of individual min
eral grains, to build a robust interpretative framework for U isotope 
effects in natural accessory phases and bulk samples. 

5.2.4. Ore deposits 
Due to their high U concentration, U ore deposits were the preferred 

target material for early U isotope studies (Nier, 1939; Lounsbury, 1956; 
Senftle et al., 1957; Hamer and Robbins, 1960; Rosholt et al., 1963, 

Fig. 13. Compilation of δ238U values in ore deposits. The symbol shapes 
represent the sample types: circle (high temperature redox sensitive), diamond 
(low temperature redox sensitive), and triangle (non-redox sensitive, QP =
quartz-pebble). The brown band shows δ238U value of continental crust (-0.29 
± 0.03‰, Tissot and Dauphas, 2015). 

Fig. 14. Compilation of δ238U of extraterrestrial samples, including bulk me
teorites and their components. The symbol shapes represent the sample types: 
circle (chondrites), triangle (achondrites), and diamond (meteorite compo
nents). The brown band shows δ238U value of continental crust (-0.29 ± 0.03‰, 
Tissot and Dauphas, 2015). 
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1965). The discovery in the early 70s of natural ‘fossil’ fission nuclear 
reactors with extremely high 238U/235U (due to 235U burn-up) in Oklo 
(Gabon), led to a renewed interest for U isotope studies in ore deposits as 
a way to search for such reactors (Cowan and Adler, 1976; Richter et al., 
1999a; Kirchenbaur et al., 2016). A thorough review of observations and 
mechanisms of U isotope fractionation in ore deposits can be found in 
Andersen et al. (2017) and we only provide a brief overview below. 

Extensive characterizations of U ore from various deposit types and 
locations revealed that ore deposits from different geological settings 
have distinct U isotopic compositions (Fig. 13), opening the possibility 
to utilize U isotopic composition as a “fingerprint” to distinguish and 
trace the origins of ore samples (Richter et al., 1999a; Keegan et al., 
2008; Bopp et al., 2009; Brennecka et al., 2010a; Uvarova et al., 2014; 
Kirchenbaur et al., 2016; Placzek et al., 2016; Spano et al., 2017; Keatley 
et al., 2021). While the majority of U ore deposits studies focus on iso
topic heterogeneity between mines, a few studies evaluate U isotopic 
variations at the smaller scales, such as samples collected from the same 
mine (Chernyshev et al., 2014; Kirchenbaur et al., 2016) or vein (Keatley 
et al., 2021), and even coexisting U minerals within single pitchblende 
(Chernyshev et al., 2014). Besides source fingerprinting, another 
important aim of U isotope investigations on ore deposits is to under
stand the mechanisms responsible for U isotopic fractionation in those 
environments, which are thought to be dominated by low-temperature 
reduction (Bopp et al., 2009; Brennecka et al., 2010a; Murphy et al., 
2014; Uvarova et al., 2014; Keatley et al., 2021), and post-deposition 
aqueous alteration (Brennecka et al., 2010a; Murphy et al., 2014; 
Keatley et al., 2021). To confirm the validity of using U isotope to 
fingerprint the source of U in uranium ore concentrates (uranium oxide 
U3O8, an intermediate product of U ore after mining and chemical 
processing), a few studies have also investigated the impact of (i) small 
scale U isotope heterogeneity in the ore material and (ii) the 
manufacturing processes (Golubev et al., 2013; Spano et al., 2017; 
Keatley et al., 2021). 

5.2.5. High precision chronology 
Based on the decay of 235U and 238U to 207Pb and 206Pb with half- 

lives of 0.703 Gyr and 4.468 Gyr, respectively (Jaffey et al., 1971) the 
U-Pb/Pb-Pb system is the most widely used high-precision chronometer 
for dating terrestrial and extraterrestrial samples. Provided knowledge 
of the 238U/235U ratio at present, the dual decay system allows deter
mination of a Pb-Pb age as: 
207Pb*

206Pb* =
235U
238U

×
eλ235 t − 1
eλ238 t − 1

(28)  

where * denotes radiogenic lead, λ235 and λ238 are decay constants for 
235U and 238U, and t is the age of the sample. 

For the sake of interlaboratory calibration, and in the absence of 
resolvable U isotope variations (beside Oklo) in natural materials, a 
238U/235U consensus value of 137.88 was adopted in the late 70s for Pb- 
Pb dating (Steiger and Jäger, 1977). This important assumption was, 
however, overthrown by the discovery of resolvable U isotopic varia
tions in natural samples (e.g., Stirling et al., 2007; Weyer et al., 2008; 
Bopp et al., 2009; Amelin et al., 2010; Hiess et al., 2012; Tissot and 
Dauphas, 2015). The impact of these variations on the accuracy of U-Pb 
and Pb-Pb ages has been extensively discussed (Hiess et al., 2012; Tissot 
and Dauphas, 2015; Tissot et al., 2017, 2019), and it is now accepted 
that both U and Pb isotopes need to be measured to obtain both precise 
and accurate dates. 

The impact of U isotope variations is particularly important in early 
solar system (ESS) chronology, because (i) it took less than 10 Myr from 
the condensation of the Calcium, Aluminum-rich inclusions (CAIs: the 
first solids in the solar nebula) to the differentiation of asteroids (Con
nelly et al., 2017), (ii) the Pb-Pb system is the only high-precision ab
solute chronometer for such ancient ages, and (iii) small variations in 
238U/235U results in relatively significant age offsets (~0.15 Myr offset 

per 0.1‰ variation, Tissot and Dauphas, 2015) compared to the 
achievable precision of Pb-Pb ages (~0.2-0.5 Myr). Together with the 
long-lasting search for the short-lived radionuclide 247Cm (Section 
5.2.6), this has led to a wide characterization of U isotopes in extrater
restrial materials (Fig. 14), from bulk meteorites, including carbona
ceous chondrite, ordinary chondrite, enstatite chondrite, achondrites (e. 
g., angrite, acapulcoite, aubrite, eucrite, and howardite), and ungrouped 
meteorites (Stirling et al., 2005; Amelin et al., 2010, 2011; Larsen et al., 
2011; Bouvier et al., 2011b; Brennecka and Wadhwa, 2012; Connelly 
et al., 2012; Iizuka et al., 2014; Andersen et al., 2015; Goldmann et al., 
2015; Spivak-Birndorf et al., 2015; Tissot et al., 2017), to meteorite 
components, such as CAIs, chondrules, mineral separates, and meteorite 
leachates (Stirling et al., 2006; Amelin et al., 2010; Brennecka et al., 
2010b, 2015; Bouvier et al., 2011a; Brennecka and Wadhwa, 2012; 
Connelly et al., 2012; Goldmann et al., 2015; Tissot et al., 2016; Bollard 
et al., 2017; Shollenberger et al., 2019; Merle et al., 2020). While vari
ability can be resolved in most of these samples at the 0.1 to 0.5 ‰, the 
largest variations are observed in CAIs, with 235U excesses reaching 
several ‰ (up to +59‰ in the Curious Marie CAI). The U-corrected Pb-Pb 
ages produced in some of these studies continue to refine the chronology 
and evolution history of the ESS, for instance establishing the age of the 
Solar System at ~ 4.567-4.568 Gyr old (Amelin et al., 2010; Bouvier and 
Wadhwa, 2010; Bouvier et al., 2011a; Connelly et al., 2012), and 
demonstrating that chondrule formation and reprocessing started 
contemporaneously with CAI formation and extended for ~ 4 Myr after 
that (Bollard et al., 2017). In details, however, slight discrepancies be
tween U-corrected Pb-Pb ages and chronometric constraints derived 
from short-lived chronometers, in particular the Al-Mg system, are the 
subject of much debate. Indeed, when combined U-Pb and Al-Mg iso
topic investigations are conducted on the same CAI and chondrule 
samples, lower ESS 26Al initials are recorded in chondrules than CAIs, 
and variable 26Al initials are derived from different chondrules (Bollard 
et al., 2019). Understanding whether these variations (i) represent a true 
heterogeneous distribution of 26Al in the ESS, (ii) have chronometric 
meaning, (iii) are the results of small systematic analytical biases (e.g., 
isotopic fractionation during sample step leaching), or (iv) are a com
bination of the above, is a topic of intense research. Another issue in 
extraterrestrial samples is that the U isotope composition of some 
meteorite groups are not well-constrained, such as enstatite chondrites, 
howardites, acapulcoites, or aubrites (Fig. 14), and investigations on 
meteorite components are also limited to a few meteorites, primarily 
from the CV group. 

Relevant to both extraterrestrial and terrestrial studies, 238U/235U 
variations also exist in the U-bearing minerals commonly used in U-Pb / 
Pb-Pb chronology, such as zircon, uraninite, apatite, monazite, xen
otime, and baddeleyite (Hiess et al., 2012; Livermore et al., 2018). For 
zircon, the most widely used dating phase, variations have been 
observed in pooled fractions (100s to 1000s) of comagmatic grains 
(Hiess et al., 2012; Livermore et al., 2018) as well as in single crystals 
(Tissot et al., 2019). Recently, variations from -3.5 ±2.2 ‰ to 13.1 ± 3.4 
‰ have also been reported in single grains of titanite using LA-MC-ICP- 
MS and 1013 ohm amplifiers (Yamamoto et al., 2021). As discussed in 
Tissot and Ibañez-Mejia (2021), while these data clearly indicate the 
existence of significant mineral specific U isotope fractionations and, 
more likely for the largest effects, of kinetic isotope fractionations 
occurring at magmatic temperatures, the exact mecanisms driving U 
isotope fractionation in magmatic settings remain almost entirely 
unconstrained. 

5.2.6. Search for 247Cm 
Curium-247 is short-lived radionuclide which decays into 235U, with 

a half-life of 15.6 Myr (Tuli, 1995). Both U and Cm belong to the acti
nides, a group of heavy metal elements produced by the rapid neutron 
capture process (r-process), most likely during neutron-star merger 
events (Ji et al., 2016; Côté et al., 2021). If 247Cm was present in the 
early solar system, the 247Cm-235U system would have the potential to 
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serve as a short-lived r-process chronometer (Blake and Schramm, 
1973). Since 247Cm is now extinct, the only evidence for the presence of 
live 247Cm in the ESS would be 235U excesses correlated with Cm/U 
ratios in ESS materials. An additional complication is that Cm has no 
stable isotope, and a proxy has to be used, most appropriately Nd (see 
Tissot et al., 2016 for details). 

The findings of early investigations on 247Cm are controversial due to 
analytical limitations: 235U excesses or depletion up to several tens of 
percent were reported in meteorites, refractory inclusions and leachates 
(Arden, 1977; Tatsumoto and Shimamura, 1980). Follow up studies 
leveraging the “Lunatic I” digital TIMS and the double spike technique 
showed that lunar and meteoritic materials (and their inclusions) had no 
excess 235U, within uncertainties, relative to the Earth (Chen and Was
serburg, 1981a, b, c; Chen, 1988). The search for the existence of 247Cm 
ceased for approximately two decades, and only restarted after the 
advent of MC-ICP-MS, which achieved 1-2 orders of magnitude higher 
precision. Stirling et al. (2005, 2006) revisited the U isotopic composi
tions of bulk meteorites, mineral separates, and meteorite leachates. 
These initial searches did not find any well-resolved 235U anomalies, but 
brought down the upper limit on the ESS 247Cm/235U ratio from ~4x10-3 

(Chen and Wasserburg, 1981a) to ~8 x10-5. In an investigation of CAIs, 
Brennecka et al. (2010b) found 235U anomalies (up to ~3.5 permil) that 
correlated broadly with Nd/U and Th/U ratios. This study brought the 
first evidence of live 247Cm in the ESS, suggesting an ESS 247Cm/235U 
ratio of (1.2 to 2.4) ×10-4. But the origin of these isotopic signatures was 
rapidly questioned as subsequent studies of CAIs found departure from 
the apparent correlation between 235U excess and Nd/U ratios (Amelin 
et al., 2010; Connelly et al., 2012), and instead argued that the observed 
variations reflected mass-dependent fractionation during condensation 
of solid CAIs from nebular gas. By targeting fine-grained CAIs, which, 
due to their volatility-controlled origin, have large Nd/U (and thus Cm/ 
U) ratios, Tissot et al. (2016) was able to find an extremely U-depleted 
CAI, Curious Marie, which also contained a 235U excess (of +59‰) 
outside the range plausibly explained by evaporation/condensation 
processes. While more samples would be desirable to populate what is 
currently essentially a two-points isochron, the discovery of Curious 
Marie confirmed the presence of live 247Cm in the ESS, with an initial 
247Cm/235U of (5.6±0.3)×10-5 (Tissot et al., 2016; Tang et al., 2017), a 
value that has become a key constraint to determine the astrophysical 
site of the r-process, and the timing of last injection of r-nuclides in the 
solar system’s parental molecular cloud (Ji et al., 2016; Côté et al., 
2021). 

5.2.7. Experimental studies 
Early experimental studies on U isotopes mainly investigated the 

effect of chemical exchange between reduced and oxidized (typically U 
(IV)-U(VI)) uranium phases. While the conclusion was that such an 
approach was not economically viable for large scale 235U enrichment, 
these studies found (i) a preferential incorporation of heavy U isotopes 
in the U phase with the lower oxidation state (i.e., reduced U, Shimokaua 
and Kobayashi, 1970; Florence et al., 1975; Fujii et al., 1989a, b, 2006; 
Nakanishi et al., 1996), and (ii) that the fractionation of uranium iso
topes with odd mass numbers (233U and 235U) did not follow the mass- 
dependent fractionation line defined by isotopes with even mass 
numbers (234U and 236U) (Fujii et al., 1989a, b; Nomura et al., 1996). 
This odd-even staggering pattern was shown to be closely related to the 
isotope shift in the atomic spectra of U (Gagné et al., 1976, 1977, 1978). 
The odd-even effect of U isotopes is interpreted as the result of nuclear 
field shift effects (NFS), which result from the displacement of electronic 
energy caused by differences in electron density and isotope shape 
(Bigeleisen, 1996). 

NFS, as a mass-independent but volume-dependent effect, prompted 
a rethinking of equilibrium fractionation theory (Bigeleisen, 1996; 
Knyazev and Myasoedov, 2001; Schauble, 2007; Yang and Liu, 2016). As 
mass-dependent fractionation decreases with increasing mass, and NFS 
effects increase with electron density at the nucleus, NFS effects are most 

pronounced in heavy elements (i.e., with large nuclei). Today, it is well 
accepted that NFS effects are the dominant driver of U isotope frac
tionations in natural materials. Indeed, NFS effect during U redox re
actions at room temperature are 3x larger than mass-dependent effects 
(Bigeleisen, 1996; Schauble, 2007; Abe et al., 2008). Furthermore, while 
mass-dependent fractionation scales proportionally to 1/T2, NFS effects 
scale as 1/T, which implies that their relative contribution to the total 
isotope fractionation increases in high-T (e.g., igneous) environments, 
an observation supporting the potential of U isotopes as redox tracers in 
magmatic environments (Tissot and Ibañez-Mejia, 2021). It is important 
to point out that NFS effects are equilibrium effects, and that it is not the 
reduction of U itself that promotes the isotopic fractionation, but the 
equilibration between oxidized and reduced U that allows the expres
sion of these effects (see next section). 

5.2.7.1. Redox experiments. Laboratory-based experiments are impor
tant approaches for quantifying the U fractionation associated with 
specific reaction pathways or environmental conditions. For U, redox 
reactions have been heavily studied, because of their potential for (1) 
understanding the role of redox transformation in U cycling near the 
Earth’s surface and (2) developing remediation methods to control 
contamination in aquifer systems. 

Laboratory-controlled redox experiments have primarily focused on 
U reduction processes, which are further subdivided into biotic and 
abiotic reduction. There are two major pathways for U biotic reduction: 
those involving metal-reducing bacteria (Basu et al., 2014; Stylo et al., 
2015b) and those involving sulfate-reducing bacteria (Rademacher 
et al., 2006; Stirling et al., 2015; Stylo et al., 2015a; Dang et al., 2016; 
Basu et al., 2020). Abiotically, U(VI) can be reduced by various natural 
reductants such as zerovalent metal, Fe(II)-based reductant, sulfide 
reductant, and reduced organic matter (Rademacher et al., 2006; Stir
ling et al., 2007; Stylo et al., 2015b; Brown et al., 2018). During biotic 
reduction, microbes preferentially incorporate 238U and transfer it into 
the reduced phase, leading to a lower δ238U (by ~ -1‰) in the remaining 
U(VI) pool (Basu et al., 2014, 2020; Stirling et al., 2015; Stylo et al., 
2015a, b; Dang et al., 2016). One early study reported slightly higher 
δ238U (by ~+0.2 ‰) in the oxidized U phase during biotic reduction 
(Rademacher et al., 2006), but this result has since been revisited and 
attributed (by the same research group, Basu et al., 2014) to U(VI) 
adsorption onto the surface of bacteria cells overcompensating the U 
effect of reduction process during the U removal from the solution. In 
contrast, abiotic reduction experiments using zerovalent metals (Fe0: 
Rademacher et al., 2006; Zn0: Stirling et al., 2007) and organic species 
(peat: Stylo et al., 2015b) yielded no resolvable U isotopic fractionation. 
Adding to the initial confusion, most abiotic reduction reactions driven 
by Fe (II) and/or sulfide reductants, produced detectable U isotopic 
variations, but in the opposite direction of biotic reduction: 238U is 
enriched in the remaining U(VI) pool (Stylo et al., 2015b). For a time, 
these results were interpreted as evidence that only biotic reduction 
results in significant NFS effects (i.e., 238U enrichments in the reduced 
phase), and the exciting possibility that U isotopes might be a specific 
tracer of bioreduction. This hypothesis was disproven by Brown et al. 
(2018), who showed that preferential sequestration of 238U in the 
reduced U phases could occur even during abiotic reduction. This study 
was instrumental as it further showed that the seemingly conflicting 
literature results discussed above could be easily reconciled in a 
framework where 238U/235U fractionations reflects a balance between 
equilibrium (NFS) isotope effects and kinetic isotope fractionation. 
Indeed, during fast U removal, isotope fractionations are driven by ki
netic (mass-dependent) effect, favoring precipitation in the reduced 
phase of the lighter 235U isotope. In contrast, the expression of full blown 
NFS effects, with 238U being enriched in the reduced phase, are only 
possible when U removal from the solution is slow enough that U(VI)-U 
(IV) isotope equilibration has time to take place. Because the pace of U 
removal (i.e., reaction rate) is tied to the speciation of aqueous U, which 
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itself depends on the water chemistry, this study also further supported 
the conclusion of Chen et al. (2017) that the fractionation factor asso
ciated with reductive U removal from the ocean (Δreduced-seawater) would 
likely change over geological times, as a function of the Ca/Mg, pCO2, 
and pH of seawater. 

In comparison to U reduction, there has been very little research 
done on U isotopic fractionation during U oxidation. Wang et al. (2015a) 
used dissolved oxygen to oxidize U(IV) and found a very limited 
enrichment of 238U in the remaining reduced phase, likely due to a rind 
effect limiting the development of large isotope fractionations. 

5.2.7.2. Well injection. Uranium contamination of groundwater and 
sediments during the mining and processing of U ores is a major public 
health concern and developing in-situ remediation techniques is the 
target of many environmental studies (Wall and Krumholz, 2006). The 
main approach to mitigate U pollution and decrease [U] in the 
groundwater is to immobilize aqueous U as a solid phase in the aquifer 
by changing its mobility (e.g., Ginder-Vogel et al., 2006; Hyun et al., 
2009). Since the mobility of U is controlled by its oxidation state and 
aqueous speciation, the two main methods of U immobilization revolve 
around the injection of amended groundwater in contaminated sites that 
promotes either (i) reduction of soluble U(VI) to insoluble U(IV), or (ii) 
adsorption to the walls of the aquifer through changes in U(VI) 
speciation. 

While the determination of U concentrations is the most common 
and straightforward approach for monitoring the efficiency of U- 
contamination remediation methods, it often cannot be used to identify 
the geochemical processes at play in the aquifer (Jemison et al., 2018). 
Being able to confirm that the low groundwater U concentrations are the 
results of the implemented remediation method (reduction vs adsorp
tion) and not some other, non-controlled, parameter is crucial. Uranium 
isotope variations have emerged as a promising new tool to fingerprint 
these processes, inspired by the potential revealed by laboratory studies 
on U isotopic fractionation (Rademacher et al., 2006; Basu et al., 2014; 
Stylo et al., 2015a; Wang et al., 2015a, b; Dang et al., 2016). In line with 

the early findings of Brennecka et al. (2011b), recent field studies show 
that only limited 238U/235U fractionation is observed during the 
adsorption-desorption treatment, with 235U being preferentially 
removed from solution (Δadsorbed-aqueous~0 to -0.22 ‰, Shiel et al., 2013; 
Jemison et al., 2016; Dang et al., 2016). On the contrary, bio
remediations that take advantage of metal-reducing bacteria lead to 
large and clearly resolvable fractionations of opposite direction 
(Δreduced-aqueous ~ +0.5 to +1.0 ‰; Bopp et al., 2010; Shiel et al., 2016), 
consistent with the permil effects observed in postmining natural 
reduction settings (Basu et al., 2015; Brown et al., 2016; Placzek et al., 
2016). In a recent oxidation experiment designed to simulate the natural 
remobilization through U oxidation after remediation, Jemison et al. 
(2018) showed that a significant δ238U change was observed, supporting 
the adequacy of using U isotopes as a monitor of natural redox reactions 
at mining sites. This conclusion is strengthened by recent reactive 
transport modeling efforts, which demonstrated that incorporating 
δ238U data in the model allows for better interpretation of chemical 
reactions and groundwater transport processes influencing U cycling 
(Jemison et al., 2020). 

5.2.7.3. Other experimental studies. In addition to redox reactions, lab- 
controlled experiments have investigated U isotopic fractionation dur
ing adsorption, coprecipitation, complexation, weathering, and biotic 
uptake. U(VI) adsorption onto Mn-oxyhydroxides (birnessite) (Bren
necka et al., 2011b) and Fe-hydroxides (goethite) (Dang et al., 2016) 
under oxic conditions preferentially incorporate 235U into adsorbed 
phases (Δadsorbed-aqueous ~ -0.20 ‰). Similarly, nonreductive U uptake by 
freshwater plankton also enriches lighter U isotopes in the biomass 
(Δplankton-aqueous ~ -0.23 ‰, Chen et al., 2020). As partly discussed 
above, the aqueous speciation of U, and thus the water chemistry and 
pH, as well as the nature of the mineral phase (e.g., calcite vs aragonite) 
were also shown experimentally to influence the degree of isotope 
fractionation observed in carbonates (Chen et al., 2016, 2017; Brown 
et al., 2018). 

A study investigating U(IV)-U(VI) exchange under near natural 
aqueous conditions also observed 235U enrichment in U(VI) (ΔU(VI)-U(IV) 
~ -1.64 ‰, Wang et al., 2015b), slightly larger than, but still broadly 
consistent with, the ~1.2-1.3 ‰ effects expected from NFS. Under 
anoxic conditions, a recent study showed that U(IV) can be remobilized 
by ligands in the near-surface environment, resulting in 238U concen
trating in mobilized materials, potentially complicating remediation 
monitoring or paleo-redox reconstructions (Roebbert et al., 2021). 

A few leaching experiments have also been conducted to try to 
evaluate the influence of weathering and alteration on U isotopic frac
tionation, as well as to ensure that the minerals used for age determi
nation behave as closed system with regards to U isotopes. The impact of 
leaching on U isotope fractionation remains, however, unclear. While a 
systematic enrichment of 235U was observed in the leachates from 
euxenite (Stirling et al., 2007) and zircon (Hiess et al., 2012), other 
studies on zircon (Stirling et al., 2007; Livermore et al., 2018) and 
uraninite (Stirling et al., 2007) found no systematic offset between the 
leachates and bulk analyses. While the 235U enrichment in successive 
leaching steps of euxenite and zircon have been interpreted as evidence 
of the preferential release of weakly bound 235U from the crystal lattice 
during leaching, these effects could also simply reflect equilibrium U 
isotope fractionation between the oxidized (soluble) U in the leachates 
and reduced (insoluble) U in the minerals. More controlled experiments 
are needed to understand the isotopic impact of leaching on minerals. 

Assuming U removal during U reaction experiments can be described 
as a Rayleigh distillation process, the U isotopic fractionation can be 
described as: 

δ238U =
(
δ238U0 + 1000‰

)
[
c(t)
c0

]α− 1

− 1000‰ (29) 

where δ238U0 and c0 are the initial isotopic composition and 

α = 0.0003044·ln(t1/2)+1.0003
Brown et al. (2018)

Biotic reduction
Abiotic reduction
Oxidation

Complexation
Biotic uptake
Coprecipitation

ln(t1/2)

α(eq) = 1.0012

α(kin) = 0.9998

α

-2

0.9992

0.9996

1.0000

1.0004

1.0008

1.0012

-1 0 1 2 3 4 5 6 7

Fig. 15. Relationship between the isotope fractionation factor (α) and half-life 
of aqueous U(VI) (t1/2, in hours) for various U removal reactions. When 
available, fractionation factors and half-lives are plotted as reported in the 
original publication. Otherwise, α and t1/2 are calculated based on Eqs. (29)– 
(32). The orange line represents the best fit between α and t1/2 from a series of 
abiotic uranium reductions defined in Brown et al. (2018). The grey dash lines 
show the limit of kinetic fractionation (0.9998) and equilibrium fractionation 
(1.0012) respectively. 
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concentration of aqueous U; δ238U and c(t) are the isotopic composition 
and concentration at the sampling time t; and α is the U isotopic frac
tionation factor. Eq. (29) can be rewritten in the following format: 

ln
(
δ238U + 1000‰

)
= (α − 1)ln

[
c(t)
c0

]

+ ln
(
δ238U0 + 1000‰

)
(30) 

The α value can be determined by the slope of the linear regression 
between ln(δ238U + 1000‰) and ln[c(t)/c0]. Furthermore, in the case of 
a first-order reaction, the concentration and reaction time are related by 
the following equation: 

ln
[
c(t)
c0

]

= − kt (31) 

where k is the first-order rate constant, which can be obtained by 
linear fit between ln[c(t)/c0] and time. The half-life (t1/2) is expressed as: 

t1/2 = ln(2)
/
k (32) 

Brown et al. (2018) investigated the relationship between the frac
tionation factor, α, and the aqueous U(VI) half-life in a series of abiotic 
reduction. This relationship revealed how the degree of U isotopic 
fractionation relates to the U removal rate. Using the UID, we expanded 
this framework to more U removal reactions (Fig. 15), including biotic 
and abiotic reduction, oxidation, complexation with ligand, biotic U 
uptake, and U coprecipitation with other mineral phases (Basu et al., 
2014, 2020; Stylo et al., 2015a, b; Wang et al., 2015a; Chen et al., 2016; 
Brown et al., 2018; Roebbert et al., 2021). Only the experiments with 
first-order reactions rates are included in Fig. 15. We find that most 
abiotic reduction experiments and some of the biotic reduction and 
oxidation experiments follow the α-t1/2 relationship defined in Brown 
et al. (2018), with no experiments plotting significantly to the left of this 
relationship. This observation further supports the proposal by Brown 
et al. (2018) that when the aqueuous U(VI) half-life is short, the extent of 
isotopic fractionation represents a balance between equilibrium isotope 
fractionation (in this case, the mass-independent NFS) and kinetic 
isotope fractionation. Brown et al. (2018) further hypothesized the 
necessary half-life to achieve the predicted NFS fractionation of ~1.2 ‰ 
is ~65 hr. The plateau in isotope fractionation factors observed at ~ 1‰ 
in biotic reduction experiments with long aqueous U(VI) half-lives 
supports this proposal. It also reveals that the theoretical maximum 
NFS effects (~1.2 ‰; Bigeleisen, 1996) is not expressed in any of the 
currently available experiments, indicating (i) that complete equilib
rium between U(VI) and U(IV) is never attained, and/or (ii) in all ex
periments, another process imparts a small (~0.2‰) negative isotope 
fractionation. The same mechanism is likely to explain the similar offest 
to lower fractionation factors that is observed in many of the biotic 
reduction experiments with aqueous U(VI) half-life lower than 65 hr. 
More work is needed to further undertsand these effects. 

In clear contrast to the redox experiments, other U removal reactions 
are characterized by small, negigible or negative isotopic fractionations. 
This indicates that for these reactions, NFS effects are not the dominant 
driver of isotope fractionation. Instead, and as previous work have 
proposed, the fractionation factors retrieved from complexation, 
coprecipitation, and biotic uptake must reflect a stong control of 
vibrational mass-dependent effects (e.g., during U adsorption) and/or 
kinetic effects, which both tend to enrich the product of the reaction in 
the lighter isotopes. 

5.2.8. Forensic studies 

5.2.8.1. Natural nuclear fission reactor. Under the right conditions, U- 
rich deposits formed before ~1.8 Ga, when natural 235U abundance was 
>~3%, could have reached criticality. The only location where such 
sustained spontaneous fission chain reactions are known to have natu
rally occurred is in the mine of Oklo, in the Republic of Gabon. These 
reactors are a series of sandstone-hosted U ore deposits discovered in the 

1970’s near Oklo and Bangombè, where natural fission events occurred 
at ~ 1.78 Ga (Bodu, 1972; Neuilly et al., 1972; Roth, 1977). Compared 
with other types of U deposits (see Section 5.2.4), natural nuclear re
actors display unusually high 238U/235U ratios due to 235U burn-up 
during self-sustained fission. As a result, U isotopic compositions in 
Oklo’s bulk ore samples or their mineral components are widely used to 
examine nuclear fission activities (Lancelot et al., 1975; De Laeter et al., 
1980; Holliger and Devillers, 1981; Curtis et al., 1989; Loss et al., 1989; 
Bros et al., 1993, 1996, 2003; Gauthier-Lafaye et al., 1996; Hidaka and 
Holliger, 1998; Hidaka et al., 1999; Fernández-Díaz et al., 2000; Hidaka 
and Gauthier-Lafaye, 2000; Horie et al., 2004; Kikuchi and Hidaka, 
2009). Natural fission reactors are important for assessing the long-term 
effects of nuclear waste disposal in geological settings because they are 
considered as analogues of disposal sites to understand the behavior of 
radionuclides in natural environment over geological timescales. Hence, 
numerous isotopic investigations have studied the presence and migra
tion of fissiogenic radionuclides in Oklo’s natural nuclear reactors (e.g., 
Mo, Ru, Pd, Ag, Cd, Sn, Te, Cs, Ba, Tc, Rh and rare earth elements) 
(Gauthier-Lafaye et al., 1996). 

5.2.8.2. Health physics. Depleted uranium, which is predominantly a 
by-product of nuclear enrichment efforts, has numerous civilian and 
military applications, including in aeronautics, the shipbuilding in
dustry, radiological protection, chemical manufacturing and armor- 
piercing ammunitions, due to its high density, hardness, and melting 
point (Bleise et al., 2003). Internal exposure to DU is a major health 
concern in humans, especially soldiers, who can be exposed to DU via 
inhalation of airborne particles from weapon combustion, ingestion of 
contaminated food and water, penetration by embedded shrapnel, and/ 
or contact on wounds (Bleise et al., 2003). Given that DU has a U isotopic 
composition significantly different from that of NU (i.e., it is depleted in 
234U and 235U), isotopic compositions of urine or blood can be effective 
diagnostic tools for tracing the source of U exposure. U in urine is the 
primary focus of isotopic studies on DU exposure since it has historically 
been used in biomonitoring (Duarte and Szeles, 1994; Ejnik et al., 2000, 
2005; Horan et al., 2002; Krystek and Ritsema, 2002; Pappas et al., 
2003; Gwiazda et al., 2004; Parrish et al., 2006; Gray et al., 2012; Xiao 
et al., 2014), while only a few pioneering studies have investigated U 
isotopes in blood specimen (Tolmachyov et al., 2004; Todorov et al., 
2009). These studies successfully identified DU exposure in patients by 
detecting lower 235U/238U ratios urine or blood samples than NU. 

5.2.8.3. Nuclear contamination. U isotopes are a useful tool for tracking 
environmental contaminations produced by anthropogenic nuclear ac
tivities such as weapon explosions, power plant accidents, and other 
contaminations associated with mining or nuclear fuel processing. 

Military contamination can cause 238U/235U ratios in environmental 
samples to fluctuate in opposing directions depending on the source of 
contamination. Contamination from DU munitions causes higher 
238U/235U ratios in war-zone soils or sediments (Boulyga et al., 2001; 
Danesi et al., 2003a, b; Al-Zamel et al., 2005; Lloyd et al., 2009). Nuclear 
weapons and related tests, on the other hand, employed enriched ura
nium, resulting in lower 238U/235U ratios in atmospheric deposits or 
fallouts (Taylor et al., 1998; Fujikawa et al., 2003; Kikawada et al., 2015; 
Lewis et al., 2015). Establishing full records of 238U/235U in environ
mental samples over time is thus an efficient method for investigating 
the existence, sources, or transit of radioactive contamination (Warneke 
et al., 2002). 

Forensic investigations into power plant accidents have focused on 
the two most catastrophic nuclear energy disasters: the 1986 Chernobyl 
nuclear power plant accident (Boulyga et al., 2000; Boulyga and Becker, 
2001, 2002; Sobotovich and Bondarenko, 2001; Pazukhin and Rudya, 
2002; Sahoo et al., 2002, 2004, 2009; Boulyga and Prohaska, 2008; 
Pöml et al., 2013) and the 2011 Fukushima Daiichi nuclear power plant 
accident (Shibahara et al., 2016; Mishra et al., 2019; Veerasamy et al., 
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2020). Direct measurement of the nuclear fuel from power plant acci
dent reveals enrichment in 235U versus NU (Pöml et al., 2013). When 
fallout radionuclides from power plants migrated and deposited in 
neighboring regions, soil samples from polluted areas inherited lower 
238U/235U ratios than NU (Boulyga et al., 2000; Boulyga and Becker, 
2001, 2002; Sobotovich and Bondarenko, 2001; Pazukhin and Rudya, 
2002; Sahoo et al., 2002, 2004, 2009; Boulyga and Prohaska, 2008), 
while those that avoided contamination from the accidents preserved 
indistinguishable 238U/235U compositions relative to NU (Shibahara 
et al., 2016; Mishra et al., 2019; Veerasamy et al., 2020). 

Other nuclear contamination studies are based on the same principle 
of detecting anomalous 238U/235U in sedimentary or water samples near 
nuclear facilities that produce and process EU (Hamilton and Stevens, 
1985; Rodríguez-Alvarez and Sánchez, 1995; Howe et al., 2002; Sahoo 
et al., 2002; Yamamoto et al., 2002; Christensen et al., 2004; Meyers 
et al., 2014). And similar investigations have been conducted near mines 
(Awudu and Darko, 2011) or river systems (Joshi et al., 1983) that were 
potentially contaminated by radionuclides. 

5.2.8.4. Nuclear safeguard. The rapid and precise isotopic character
ization of particulate uranium materials is critical for nuclear safeguard 
applications, such as identifying illicit radioactive material trafficking 
and detecting the usage of unapproved nuclear materials in nuclear fa
cilities. In-situ characterization of solid nuclear samples is a useful 
approach for determining the presence and provenance of nuclear ma
terials because U particles have distinct U isotopic fingerprints that are 
influenced by source materials and manufacturing procedures (Betti 
et al., 1999; Tamborini, 2004; Varga, 2008; Marin et al., 2013; Hubert 
et al., 2014; Claverie et al., 2016; Yomogida et al., 2017; Krachler et al., 
2018; Stebelkov et al., 2018; Varga et al., 2018; Kips et al., 2019; Ron
zani et al., 2019). Aside from direct measurement of U particles (Betti 
et al., 1999; Varga, 2008; Hubert et al., 2014; Yomogida et al., 2017; 
Ronzani et al., 2019), fuel pellets (Krachler et al., 2018; Kips et al., 2019) 
and confiscated illicit U samples (Krachler et al., 2018), some of the 
nuclear safeguard studies have developed techniques to discover U 
particles in the mixture of other materials in swipe samples from the 
environment (Tamborini, 2004) or the surface of nuclear packaging 
materials (Stebelkov et al., 2018), as a means to identify and prevent 
undeclared nuclear activities without time-consuming procedures. 

6. Conclusion and outlook 

This work introduces the UID, a comprehensive, freely accessible, 
updatable, and internally consistent uranium isotope database. At this 
writing, the UID contains more than 14,000 data points from approxi
mately 320 publications. We provided a detailed description of our data 
collection procedure, all additional information entered in the UID, and 
their coverage as well as the normalization procedure carried out on the 
data. We took the highest care to make all data coherent, comparable, 
and back trackable, as well as all adjustments transparent. Adequate 
metadata are also provided to allow users to select data that are suitable 
for a particular type of study. The UID will be regularly updated to 
incorporate newly published uranium isotopes data. With constructive 
feedback from the community, we expect that the UID can become a 
reliable resource for the U isotope community, as well as the broader 
geochemical community. 

In the long-term, we hope to the see UID grow from the simple 
database presented here into a more extensive tool. This includes the 
development of an online and interactive searchable database with 
built-in visualization capabilities, as well as a streamlined protocol for 
data submission, review, and incorporation into the UID. With 
constructive feedback and involvement from the community, we expect 
that the UID can become a more community-involved resource, main
tained for and by the community, and whose impact will reach far into 
the broader geochemical community. 
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Hellstrom, J., Wang, Y., Kong, X., Spötl, C., Wang, X., Calvin, Alexander E., 2013. 
Improvements in 230Th dating, 230Th and 234U half-life values, and U–Th isotopic 
measurements by multi-collector inductively coupled plasma mass spectrometry. 
Earth Planet. Sci. Lett. 371–372, 82–91. https://doi.org/10.1016/j.epsl.2013.04.006 
. 

Cheng, K., Elrick, M., Romaniello, S.J., 2020a. Early mississippian ocean anoxia triggered 
organic carbon burial and late paleozoic cooling: Evidence from uranium isotopes 
recorded in marine limestone. Geology 48, 363–367. https://doi.org/10.1130 
/G46950.1. 

Cheng, M., Li, C., Jin, C., Wang, H., Algeo, T.J., Lyons, T.W., Zhang, F., Anbar, A., 2020b. 
Evidence for high organic carbon export to the early Cambrian seafloor. Geochim. 
Cosmochim. Acta 287, 125–140. https://doi.org/10.1016/j.gca.2020.01.050. 

Chernyshev, I.V., Golubev, V.N., Chugaev, A.V., Baranova, A.N., 2014. 238U/235U isotope 
ratio variations in minerals from hydrothermal uranium deposits. Geochemistry Int. 
52, 1013–1029. https://doi.org/10.1134/S0016702914120027. 

Cherry, L.B., Gilleaudeau, G.J., Grazhdankin, D.V., Romaniello, S.J., Martin, A.J., 
Kaufman, A.J., 2022. A diverse Ediacara assemblage survived under low-oxygen 
conditions. Nat. Commun. 13, 7306. https://doi.org/10.1038/s41467-022-35012-y. 

Chiu, C.F., Sweere, T.C., Clarkson, M.O., de Souza, G.F., Hennekam, R., Vance, D., 2022. 
Co-variation systematics of uranium and molybdenum isotopes reveal pathways for 
descent into euxinia in Mediterranean sapropels. Earth Planet. Sci. Lett. 585, 
117527. https://doi.org/10.1016/j.epsl.2022.117527. 

Christensen, J.N., Dresel, P.E., Conrad, M.E., Maher, K., Depaolo, D.T., 2004. Identifying 
the sources of subsurface contamination at the Hanford site in Washington using 
high-precision uranium isotopic measurements. Environ. Sci. Technol. 38, 
3330–3337. https://doi.org/10.1021/es034700q. 

Clarkson, M.O., Stirling, C.H., Jenkyns, H.C., Dickson, A.J., Porcelli, D., Moy, C.M., Von 
Strandmann, P.P.A.E., Cooke, I.R., Lenton, T.M., 2018. Uranium isotope evidence for 
two episodes of deoxygenation during Oceanic Anoxic Event 2. Proc. Natl. Acad. Sci. 
115, 2918–2923. https://doi.org/10.1073/pnas.1715278115. 

Clarkson, M.O., Müsing, K., Andersen, M.B., Vance, D., 2020. Examining pelagic 
carbonate-rich sediments as an archive for authigenic uranium and molybdenum 
isotopes using reductive cleaning and leaching experiments. Chem. Geol. 539, 
119412. https://doi.org/10.1016/j.chemgeo.2019.119412. 

Clarkson, M.O., Hennekam, R., Sweere, T.C., Andersen, M.B., Reichart, G.-J., Vance, D., 
2021a. Carbonate associated uranium isotopes as a novel local redox indicator in 
oxidatively disturbed reducing sediments. Geochim. Cosmochim. Acta 311, 12–28. 
https://doi.org/10.1016/j.gca.2021.07.025. 

Clarkson, M.O., Lenton, T.M., Andersen, M.B., Bagard, M.L., Dickson, A.J., Vance, D., 
2021b. Upper limits on the extent of seafloor anoxia during the PETM from uranium 
isotopes. Nat. Commun. 12, 1–9. https://doi.org/10.1038/s41467-020-20486-5. 

Claverie, F., Hubert, A., Berail, S., Donard, A., Pointurier, F., Pécheyran, C., 2016. 
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